Asmahani Awang, S.K. Ghoshal, M.R. Sahar, R. Arifin


Tailoring the spectroscopic properties of rare earth (RE) doped inorganic glasses mediated via surface plasmon resonance (SPR) by embedding metallic nanoparticles (NPs) with controlled concentration is prerequisite for photonic applications. Erbium (Er3+) doped tellurite glasses containing gold (Au) NPs are prepared and systematic characterizations are made to inspect the impacts of Au NPs of spectral features for desired tailoring. X-ray diffraction pattern confirm the amorphous nature of the glass samples and EDX analysis detects elemental traces. The UV-Vis spectra exhibit six absorption bands centered at 488, 523, 655, 800, 973 and 1533 nm corresponding to 4f-4f transitions of Er3+ ions. Glass sample containing 0.4 mol% Au (without Er2O3) reveals Au plasmon band at around 629 nm. The EDX spectra display elemental traces of Te, Er, Zn, Na and Au. Glass sample containing 0.2 mol% Au demonstrates maximum enhancement in the emission band intensity by a factor of 20.23 (orange), 18.35 (strong green), 16.80 (moderate green) and 15.46 (blue). The enhancement is attributed to the Au NPs assisted SPR effect. The beneficial features of proposed glasses nominate them as potential candidate for photonic devices and solid state lasers.


Glasses; SPR; nanoparticles; amorphous

Full Text:



Jlassi, I., Elhouchet, H., Hraiech, S. & Ferid, M. 2013. Effect of Heat Treatment on the Structural and Optical Properties of Tellurite Glasses Doped Erbium. J. Lumin. 132(3): 832–840.

Sahar, M. R., Jehbu, A. K. & Karim, M. M. 1997. TeO2–ZnO–ZnCl2 Glasses for IR Transmission. J. Non-Cryst. Solids. 213‒214: 164–167.

Sidek, H. A. A., Rosmawati, S., Talib, Z. A., Halimah, M. K. & Daud, W. M. 2009. Synthesis and Optical Properties of ZnO-TeO2 Glass System. J. Appl. Sci. 6(8): 1489-1494.

de Almeida, R., da Silva, D. M., Kassab, L. R. P. & de Araujo, C. B. 2008. Eu3+ Luminescence in Tellurite Glasses with Gold Nanostructures. Opt. Commun. 281(1): 108–112.

El-Mallawany, R. 1999. Tellurite glasses: Part 2. Anelastic, Phase Separation, Debye Temperature and Thermal Properties. Mater. Chem. Phys. 60(2):103–131.

Som, T. & Karmakar. B. 2009. Enhancement of Er3+ Upconverted Luminescence in Er3+ : Au-Antimony Glass Dichroic Nanocomposites Containing Hexagonal Au Nanoparticles. Opt. Soc. Am. B. 26(12): B21–B27.

Jlassi, I., Elhouichet, H. & Ferid, M. 2011. Thermal and Optical Properties of Tellurite Glasses Doped Erbium. J. Mater Sci. 46(3): 806–812.

Rivera, V. A. G., Ledemi, Y., Osorio, S. P. A., Manzani, D., Messaddeq, Y., Nunes, L. A. O. & Marega Jr. E. 2012. Efficient Plasmonic Coupling between Er3+:(Ag/Au) in Tellurite Glasses. J. Non-Cryst. Solids. 358(2): 399–405.

Kassab, L. R. P., Camilo, M. E., Amancio, C. T., da Silva, D. M. & Martinelli, J. R. 2011. Effects of Gold Nanoparticles in the Green and Red Emissions of TeO2–PbO–GeO2 Glasses Doped with Er3+–Yb3+. Opt. Mater. 33(12): 1948–1951.

Selvaraju, K. & Marimuthu. K. 2013. Structural and Spectroscopic Studies on Concentration Dependent Sm3+ Doped Boro-Tellurite Glasses. J. Alloy Compd. 553: 273–281.

Dimitrova, M. T., Ivanova, Y. Y., Dimitriev, Y. B., Salvado, I. M. M. & Fernandes, M. H. F. V. 2013. Nanostructured Float-Glasses After Ion-Exchange in Melts Containing Silver or Copper Ions. Int. J. Mat. Chem. 3: 29–38.

Jlassi, I., Elhouichet, H., Hraiech, S. & Ferid, M. 2012. Effect of Heat Treatment on the Structural and Optical Properties of Tellurite Glasses Doped Erbium. J. Lumin. 132(3): 832–840.

Malta, O. L., Santa-Cruz, P. A., de Sa, G. F. & Auzel, F. 1985. Fluorescence Enhancement Induced by the Presence of Small Silver Particles in Eu3+ Doped Materials. J. Lumin. 33(3): 261–272.

Puchalski, M., Dabrowski, P., Olejniczak, W., Krukowski, Kowalczyk, P. & Polanski, P. K. 2007. The Study of Silver Nanoparticles by Scanning Electron Microscopy, Energy Dispersive X-ray Analysis and Scanning Tunnelling Microscopy. J. Mat. Sci. 25(2): 473–478.

Jusman, Y., Ng, S. C. & Osman, N. A. A. 2014. Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX. Scientific World J. Doi: 10.1155/2014/289817.

Obadina, V. O. & Reddy, B. R. 2013. Investigation of Silver Nanostructures and Their Influence on the Fluorescence Spectrum of Erbium-Doped Glasses. Optics Photon. 3: 45–50.

Selvaraju, K. & Marimuthu, K. 2012. Structural and Spectroscopic Studies on Concentration Dependent Er3+ Doped Boro-Tellurite Glasses. J. Lumin. 132(5): 1171–1178.

Sharma, Y. K., Surana, S. S. L., Singh, R. K. & Dubedi, R. P. 2007. Spectral Studies of Erbium Doped Soda Lime Silicate Glasses in Visible and Near Infrared Regions. Opt. Mater. 29(6): 598–604.

da Silva, D. M., Kassab, L. R. P., Luthi, S. R., de Araujo, C. B., Gomes, A. S. & Bell, M. J. V. 2007. Frequency Upconversion in Er3+ Doped PbO–GeO2 Glasses Containing Metallic Nanoparticles. Appl. Phys. Lett. 90: 081913.

Pan, Z., Ueda, A., Aga Jr. R., Burger, A., Mu, R. & Morgan, S. H. 2010. Spectroscopic Studies of Er3+ Doped Ge-Ga-S Glass Containing Silver Nanoparticles. J. Non-Cryst. Solids. 356(23–24): 1097–1101.

de Araujo, C. B., da Silva, D. S., Assumpcao, T. A. A., Kassab, L. R. P. & da Silva, D. M. 2013. Enhanced Optical Properties of Germanate and Tellurite Glasses Containing Metal or Semiconductor Nanoparticles. Scientific World J. doi:10.1155/2013/385193.

Som, T. & Karmakar, B. 2009. Nanosilver Enhanced Upconversion Fluorescence of Erbium Ions in Er3+: Ag-Antimony Glass Nanocomposites. J. Appl. Phys. 105: 013102.

Amjad, R. J., Sahar, M. R., Dousti, M. R., Ghoshal, S. K. & Jamaludin, M. N. A. 2013. Surface Enhanced Raman scattering and Plasmon Enhanced Fluorescence in Zinc-Tellurite Glass. Opt. Express. 21: 14282–14290.

DOI: https://doi.org/10.11113/jt.v78.7832


  • There are currently no refbacks.


Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.