EFFECT OF HUMIDITY ON THE MECHANICAL PROPERTIES OF KENAF YARN FIBRE/POLYLACTIC ACID BIOCOMPOSITES

Meor Syazalee, Rozli Zulkifli

Abstract


Humidity during the fabrication of natural fibre reinforced composites can harm their mechanical performance. This study examines the effect of humidity during the fabrication of unidirectional kenaf/polylactic acid (PLA) biocomposites on their dynamic and static mechanical properties. Kenaf fibres were conditioned at different relative humidity (RH) levels (40% RH, 60% RH and 80% RH) before being pressed with PLA to form biocomposites. Kenaf/PLA biocomposites were analysed using dynamic mechanical analysis, fracture toughness in mode II, tensile and flexural. Results indicated that the value of GIIC and storage modulus decreased when the relative humidity increased. Reduced tensile and flexural modulus were observed when kenaf was exposed to high relative humidity of 80% RH. However, the form of unidirectional kenaf affected the properties and reduced the drop value in the tensile modulus. The optimum relative humidity to produce kenaf/PLA biocomposites is 40% RH.


Keywords


Biocomposite, Kenaf fibre, polylactic acid, fracture toughness, humidity

Full Text:

PDF

References


F. Vilaplana, E. Strömberg, and S. Karlsson. 2010 Environmental and Resource Aspects of Sustainable Biocomposites. Polym. Degrad. Stab. 95(11): 2147-2161.

S. Christian and S. Billington. 2009. Sustainable Biocomposites for Construction by Mechanical Properties of Hemp Fabric Biocomposites Potential Applications for Biocomposites. Composites. 11.

H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar. 2011. Kenaf Fiber Reinforced Composites: A Review. Mater. Des. 32: 4107-4121.

R. B. Yusoff, H. Takagi, and A. N. Nakagaito. 2016. Tensile and Flexural Properties of Polylactic Acid-based Hybrid Green Composites Reinforced by Kenaf, Bamboo and Coir Fibers. Ind. Crops Prod. 94: 562-573.

F. Hassan, R. Zulkifli, M. J. Ghazali and C. H. Azhari. 2017. Kenaf Fiber Composite in Automotive Industry: An Overview. International Journal of Advance Science, Engineering and Information Technology. 7(1): 315-321.

F. Hassan, R. Zulkifli, M. J. Ghazali and C. H. Azhari. 2017. Flexural Properties of Kenaf Fibre Mat Reinforced PLA Composites. Journal of Applied Environmental and Biological Sciences. 7(1): 30-35.

N. Graupner and J. Müssig. 2011. A Comparison of the Mechanical Characteristics of Kenaf and Lyocell Fibre Reinforced Poly(lactic acid) (PLA) and Poly(3-Hydroxybutyrate) (PHB) Composites. Compos. Part A Appl. Sci. Manuf. 42(12): 2010-2019.

A. A. Mamun, H. P. Heim, D. H. Beg, T. S. Kim, and S. H. Ahmad. 2013. PLA and PP Composites with Enzyme Modified Oil Palm Fibre: A Comparative Study. Compos. Part A Appl. Sci. Manuf. 53: 160-167.

M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra. 2008. Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(lactic acid) (PLA) and Kenaf Fibers. Compos. Sci. Technol. 68: 424-432.

C. A. Fuentes et al. 2016. Effect of Humidity During Manufacturing on the Interfacial Strength of Non-Pre-Dried Flax Fibre/Unsaturated Polyester Composites. Compos. Part A Appl. Sci. Manuf. 84: 209-215.

D. Zhang, N. R. Milanovic, Y. Zhang, F. Su, and M. Miao. 2014. Effects of Humidity Conditions at Fabrication on the Interfacial Shear Strength of Flax/Unsaturated Polyester Composites. Compos. Part B Eng. 60: 186-192.

O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain. 2012. Biocomposites Reinforced with Natural Fibers: 2000-2010. Prog. Polym. Sci. 37(11): 1552-1596.

Z. Azwa and B. Yousif. 2017. Physical and mechanical Properties of Bamboo Fibre/Polyester Composites Subjected to Moisture and Hygrothermal Conditions. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 0(0): 1-5.

N. A. Rosli, I. Ahmad, F. H. Anuar, I. Abdullah. 2018. The Contribution of Eco-friendly Bio-based Blends on Enhancing the Thermal Stability and Biodegradability of Poly(lactic acid). J. of Cleaner Production.

M. W. Czabaj and B. D. Davidson. 2015. Determination of the Mode I, Mode II, and Mixed-mode I-II Delamination Toughness of a Graphite/Polyimide Composite at Room and Elevated Temperatures. J. Compos. Mater.

N. A. A. Hassan, S. Ahmad, Ruey Shan Chen,F D. Zailan, D. Shahdan. 2018. Effect of Processing Temperature and Foaming Agent Loading on Properties of Polylactic Acid/Kenaf Fiber Composite Foam. Material Todays: Proceeding. 7(2): 601-606.

I. Tharazi et al. 2017. Optimization of Hot Press Parameters on Tensile Strength for Unidirectional Long Kenaf Fiber Reinforced Polylactic-Acid Composite. Procedia Eng. 184: 478-485.

S. Ochi. 2008. Mechanical Properties of Kenaf Fibers and Kenaf/PLA Composites. Mech. Mater. 40: 446-452.

R. Zulkifli and C. H. Azhari. 2018. Mode II Interlaminar Fracture Properties of Treated Silk Fibre/ Epoxy Composites at Low and High Temperature Range. International Journal of Engineering and Technology(UAE). 7(3): 129-132.

H. Li, A. Moudood, W. Hall, G. Francucci, and A. Öchsner. 2018. On the Dynamic Performance of Flax Fiber Composite Beams Manufactured at Different Relative Humidity Levels. J. Nat. Fibers. 1-11.

R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin. 2015. Effect of Moisture Absorption on Mechanical Properties of Natural Fibre Hybrid Composite. Proc. 13th Int. Conf. Environ. Ecosyst. Dev. (EED’15). 971-978.




DOI: https://doi.org/10.11113/jt.v81.13602

Refbacks



  

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.