Norazela Nordin, Syakirah Samsudin, Norjan Yusof


This study aims to isolate and identify microalgae capable of growing in high nitrate (N-NO3-) landfill leachate. Source of isolation was collected from a landfill leachate treatment plant and identified according to morphological characteristics and analysis of partial 18S and 28S rRNA genes. The isolates, identified as Chlorella vulgaris UPSI-JRM01 and Tetradesmus obliquus UPSI-JRM02 were capable of growing at high N-NO3- concentration of nitrified landfill leachate, which is up to 1500 mg/L. The biomass productivities of Chlorella vulgaris and Tetradesmus obliquus were 36.28 mg/L/day and 40.49 mg/L/day, with 44% and 37% N-NO3- removal, respectively. The biomass of Chlorella vulgaris and Tetradesmus obliquus consisted of 17.72% and 16.32% lipid and, 21.93% and 25.43% carbohydrate, respectively. The protein contents (>50%) were higher than lipid and carbohydrate contents for both microalgal species. The newly isolated microalgae species will be useful for future applications of high NO3- wastewater treatment and microalgae biomass production.


Microalgae, Chlorella vulgaris, Tetradesmus obliquus, Microalgae Biomass

Full Text:



Yusof, N., Hassan, M. A., Phang, L. Y. Tabatabaei, M., Othman, M. R., Mori, M., Wakisaka, M., Sakai, K., & Shirai, Y. 2011. Nitrification of High-strength Ammonium Landfill Leachate with Microbial Community Analysis Using Fluorescence in Situ Hybridization (FISH). Waste Management & Research. 29(6): 602-611. DOI: 10.1177/0734242X10397581.

Yusof, N., Hassan M. A., Phang, L. Y., Tabatabaei, M., Othman, M. R., Mori, M., Wakisaka, M., Sakai, K., & Shirai, Y. 2010. Nitrification of Ammonium-rich Sanitary Landfill Leachate. Waste Management. 30: 100-109. DOI: 10.1016/j.wasman.2009.08.018.

Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. 2014. Microalgal Biofuels: Flexible Bioenergies for Sustainable Development. Renew. Sust. Energ. Rev. 30: 1035-1046. DOI: 10.1016/j.rser.2013.11.003.

Taziki, M., Ahmadzadeh, H., & Murry, M.A. 2015. Growth of Chlorella vulgaris in High Concentrations of Nitrate and Nitrite for Wastewater Treatment. Current Biotechnology. 4(4): 441-447. DOI: 10.2174/2211550104666150930204835.

Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. 2018. Energetic Evaluation of Wastewater Treatment Using Microalgae. Chlorella vulgaris. Journal of Environmental Chemical Engineering. 6(2): 3213-3222. DOI: 10.1016/j.jece.2018.04.064.

Parvin, M., Zannat, M., & Habib, M. 2007. Two Important Techniques for Isolation of Microalgae. Asian Fish. Sci. 20: 117-124.

Serra-Maia, R., Bernard, O., Gonzalves, A., et al. 2016. Influence of Temperature on Chlorella vulgaris Growth and Mortality Rates in a Photobioreactor. Algal Res. 18: 352-359. DOI: 10.1016/j.algal.2016.06.016.

Nordin, N., Yusof, N., & Samsudin, S. 2016. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste and Biomass Valorization. 8(7): 2301-2311. DOI: 10.1007/s12649-016-9709-8.

Taher, H., Al–Zuhair, S., Al–Marzouqi, A. H., Haik, Y., & Farid, M. 2014. Effective Extraction of Microalgae Lipids from Wet Biomass for Biodiesel Production. Biomass Bioenergy. 66: 159-167. DOI: 10.1016/j.biombioe.2014.02.034.

George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. 2014. Effects of Different Media Composition, Light Intensity and Photoperiod on Morphology and Physiology of Freshwater Microalgae Ankistrodesmus falcatus-a Potential Strain for Bio-Fuel production. Bioresource Technology. 171: 367-74. DOI: 10.1016/j.biortech.2014.08.086.

Jia, J., Han, D., Gerken, H. G., Li, Y., Sommerfeld, M., Hu, Q., & Xu, J. 2015. Molecular Mechanisms for Photosynthetic Carbon Partitioning into Storage Neutral Lipids in Nannochloropsis oceanica under Nitrogen-depletion Conditions. Algal Research. 7: 66-77. DOI: 10.1016/j.algal.2014.11.005.

Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. 2015. Screening and Phylogenetic Analysis of Lipid-rich Microalgae. Algal Research. 11: 381-386. DOI: 10.1016/j.algal.2015.02.028.

American Public Health Association (APHA). 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington DC: American Public Health Association.

Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. 2013. Characterization and Optimization of Carbohydrate Production from an Indigenous Microalga Chlorella vulgaris FSP-E. Bioresource Technology. 135: 157-165. DOI: 10.1016/j.biortech.2012.10.100.

Talebi, A. F., Tohidfar, M., Tabatabaei, M., et al. 2013. Genetic Manipulation, a Feasible Tool to Enhance Unique Characteristic of Chlorella vulgaris as a Feedstock for Biodiesel Production. Mol. Biol. Rep. 40: 4421-4428. DOI: 10.1007/s11033-013-2532-4.

Rasoul-Amini, S., Ghasemi, Y., Morowvat, M. H., & Mohagheghzadeh, A. 2009. PCR Amplification of 18S rRNA, Single Cell Protein Production and Fatty Acid Evaluation of Some Naturally Isolated Microalgae. Food Chem. 116: 129-136. DOI: 10.1016/j.foodchem.2009.02.025.

Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. 2011. Effects of Parameters Affecting Biomass Yield and Thermal Behaviour of Chlorella vulgaris. J. Biosci. Bioeng. 111(3): 377-382. DOI: 10.1016/j.jbiosc.2010.11.006.

Yi, L., Yuesong, X., Ying, P. Y., Rongqing, Y., Pei, L., Dairong, Q., Yi, C., & Yu, C. 2014. The Biodiversity of Oleaginous Microalgae in Northern Qinghai-Tibet Plateau. Afr. J. Microbiol. Res. 8(1): 66-74. DOI: 10.5897/AJMR12.806.

Mishra, A., Medhi, K., Maheshwari, N., Srivastava, S., & Thakur, I. S. 2018. Biofuel Production and Phycoremediation by Chlorella sp. ISTLA1 Isolated from Landfill Site. Bioresource Technology. 253: 121-129. DOI: 10.1016/j.biortech.2017.12.012.

Roeselers, G, Loosdrecht, M. C. M., & Muyzer, G. 2007. Phototrophic Biofilms and Their Potential Applications. J. Appl. Phycol. 20: 227-235. DOI: 10.1007/s10811-007-9223-2.

Singh, A. & Olsen, S. I. 2011. A Critical Review of Biochemical Conversion, Sustainability and Life Cycle Assessment of Algal Biofuels. Appl. Energy. 88(10): 3548-3555. DOI: 10.1016/j.apenergy.2010.12.012.

De Francisci, D., Su, Y., Iital, A., & Angelidaki, I. 2018. Evaluation of Microalgae Production Coupled with Wastewater Treatment. Environmental Technology (United Kingdom). 39(5): 581-592. DOI: 10.1080/09593330.2017.1308441.

Li, T., Gargouri, M., Feng, J., Park, J. J., Gao, D., Miao, C., Dong, T., Gang, D. R., & Chen, S. 2015. Regulation of Starch and Lipid Accumulation in a Microalga Chlorella sorokiniana. Bioresource Technology. 180: 250-257. DOI: 10.1016/j.biortech.2015.01.005.

Concas, A., Steriti, A., Pisu, M., & Cao, G. 2014. Comprehensive Modeling and Investigation of the Effect of iron on the Growth Rate and Lipid Accumulation of Chlorella Vulgaris Cultured in Batch Photobioreactors. Bioresource Technology. 153: 340-350. DOI: 10.1016/j.biortech.2013.11.085.

Lynch, F., Santana-Sánchez, A., Jämsä, M., Sivonen, K., Aro, E. M., & Allahverdiyeva, Y. 2015. Screening Native Isolates of Cyanobacteria and a Green Alga for Integrated Wastewater Treatment, Biomass Accumulation and Neutral Lipid Production. Algal Res. 11: 411-420. DOI: 10.1016/j.algal.2015.05.015.

Cai, T., Park, S. Y. & Li, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sust. Energ.Rev. 19: 360-369. DOI: 10.1016/j.rser.2012.11.03.



  • There are currently no refbacks.


Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.