A NOVEL 1.6 KV HIGH VOLTAGE LOW CURRENT STEP-UP DC-DC CONVERTER WITH COCKCROFT-WALTON VOLTAGE MULTIPLIER FOR POWER SUPPLY MODULES

Sohiful Anuar Zainol Murad, Nor Afiqah Azmi, Azizi Harun, Tun Zainal Azni Zulkifli

Abstract


A high dc voltage is commonly used in many process industries in testing, research laboratories and others. Currently, a high voltage dc is implemented using transformer. In this paper, a novel high voltage low current transformerless step-up dc-dc converter is presented. The proposed design consists of two step-up dc-dc converters with negative feedback signal and 15 stages of Cockcroft-Walton (C-W) voltage multiplier. The dc input voltage of 5 V triggers the first step-up dc-dc converter circuit to generate 30 V dc voltage and the second step-up dc-dc converter circuit boosts up to 100 V dc voltage. Further, diode-capacitor multiplier circuit is connected at the final stage to achieve 1.6 kV dc output voltages at 200 kHz switching frequency. The simulation results indicate that the proposed dc-dc converter can generate 1.548 kV dc voltage with a load current of 0.16 mA at 10 MΩ load resistor. Meanwhile, the experiment results show that the proposed dc-dc converter can generate 1.475 kV dc voltage with 80 % efficiency. The results validate both the simulation and experimental of the proposed high dc voltage power supply module.


Keywords


DC-DC converter, high voltage, power supply, low current, voltage multiplier

Full Text:

PDF

References


P. Bhutange, N. Hadke, A. Kathane, A. Marothiya, and A. Khergade. 2017. Design and Simulation of Generation of High DC Voltage Using Cockroft-Walton Generator. International Research Journal of Engineering Technology. 4(3): 1712-1717.

D. Malviya and A. K. Bhardwaj. 2016. Analysis and Comparison of Capacitor Diode Voltage Multiplier Fed with a High Frequency and a Low Frequency Voltage Source. International Journal of Advance Research in Computer and Communication Engineering. 5(6): 234-237.

N. Barsoum and G. I. Stanley. 2015. Design of High Voltage Low Power Supply Device. Universal Journal Electrical and Electronic Engineering. 3(1): 6-12.

DOI: http://dx.doi.org/10.13189/ujeee.2015.030102.

N. Saimohanapriya and P. Nalini. 2015. CCW Voltage Multiplier Applied to Transformerless High Gain DC – DC Converter. International Journal for Research in Technological Studies. 2(11): 90-103.

Y.-P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang. 2012. Analysis and Implementation of a Novel Single-Switch High Step-Up DC-DC Converter. IET Power Electronic. 5(1):11-21. DOI: http://dx.doi.org/10.1049/iet-pel.2010.0279.

S. Chen, T. Liang, L. Yang, and J. Chen. 2011. A Cascaded High Step-Up DC – DC Converter with Single Switch for Microsource Applications. IEEE Transaction Power Electronic. 26(4): 1146-1153.

M. G. Naik, C. H. J. Rao, and N. Venugopal. 2015. Analysis of Generation of High DC Voltage. International Journal of Innovation Research Computer Communication Engineering. 3(2): 1289-1293.

V. V. Nandedkar and N. B. Narnaware. 2017. Design and Implementation of a Cockcroft-Walton voltage Multiplier Circuit. International Journal of Engineering Development and Research. 5(2): 261-2647.

M. G. Naik, C. H. J. Rao, and V. N. D. 2013. Boost Converter with Multistage Cockcroft Walton Voltage Multiplier. International Journal of Science and Research. 4(3): 20-25.

L. Katzir and D. Shmilovitz. 2015. A High Voltage Split Source Voltage Multiplier with Increased Output Voltage. Proceeding of Applied Power Electronics Conference and Exposition (APEC). 1: 3272-3275.

DOI: http://dx.doi.org/10.1109/APEC.2015.7104821.

A. Ajami, H. Ardi, and A. Farakhor. 2015. A Novel High Step-up DC / DC Converter Based on Integrating Coupled Inductor and Switched-Capacitor Techniques for Renewable Energy Applications. IEEE Transaction Power Electronic. 30(8): 4255-4263.

DOI: http://dx.doi.org/10.1109/TPEL.2014.2360495.

A. Jain and E. Simith. 2014. AC-DC Matrix Converter Based On Cockcroft-Walton Voltage Multiplier. IOSR Journal of Engineering. 4(7):16-23.

L. Yang, T. Liang, and J. Chen. 2009. Transformerless DC-DC Converters with High Step-Up Voltage Gain. IEEE Transaction on Industrial Electronics. 56(8): 3144-3152.

R. Kavitha and J. Jeyasudha. 2014. Matrix Converter Based on Voltage Multiplier with PFC. International Journal of Engineering Science and Innovative Technology. 3(2): 522-531.

A. Mohandoss, G. Radhakrishnan, and S. Murugan. 2014. High Performance High Step-Up AC-DC Matrix Converter based on Voltage Multiplier with Improved Power Factor and Stability. International Journal of Science, Engineering and Technology Research. 3(11): 2886-289.

G. S. S. Raaj and G. T. S. Rajan. 2013. Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC-DC Matrix Converter based on Cockcroft-Walton Voltage Multiplier. Proceeding of International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing. 1-8.

R. Prince and R. Kalaivani. 2013. DC-DC Converter Based On Cascade Cockcroft-Walton Voltage Multiplier for High Voltage Gain without Using Transformer. International Journal of Engineering Science and Innovative Technology. 2(2): 464-474.

D. P. Reddy, V. Suvitha, and K. Somasekhar. 2014. DC-DC Converter Based on Cockcroft-Walton for High Voltage Gain. Journal of Computer Sciences and Engineering. 3(3): 26-32.

A. Alijani, J. Adabi, and M. Rezanejad. 2016. A Bipolar High-Voltage Pulsed-Power Supply Based on Capacitor-Switch Voltage Multiplier. IEEE Transaction PLASMA Science. 44(11): 2880-2885.

DOI: http://dx.doi.org/10.1109/TPS.2016.2611562.

A. P. Patel and M. Rathod. 2016. Design, Simulation and Construction of Cockroft Walton Voltage Multiplier. Journals-Global Research and Development Journal of Engineering. 1(4): 67-71.

P. S. Patel and D. B. Dave. 2013. Design, Analysis & Implementation of Negative High Voltage DC Power Supply Using Voltage Multiplier Circuits. International Journal of Engineering Trends and Technology. 4(4): 702-706.

N. M. Waghamare and R. P. Argelwar. 2015. High Voltage Generation by Using Cockcroft-Walton Multiplier. International Journal of Science, Engineering and Technlogy Research. 4(2): 256-259.

M. Chaudhari, S. Dalvi, V. Sawant, and N. Pinjari. 2017. Design and Simulation of High Voltage DC Source by Using Cockcroft Walton Voltage. International Journal of Advanced Research in Electrical Electronics and Instrumentation Engineering. 6(3): 1301-1304.

S. Mao, Z. Cao, and X. Chu. 2015. High Voltage Pulse Speed Study for High Voltage DC-DC Power Supply Based on Voltage Multipliers. Proceeding in 17th European Conference Power Electronic Application. 8-10.

DOI: http://dx.doi.org/10.1109/EPE.2015.7311749.

L. T. Corporation. 2015. LT8331 Low IQ Boost/SEPIC/Flyback/Inverting Converter with 0.5A, 140V Switch.

M. N. Karthikeyan, R. P. Pandu, M. Gopisivaprasad, and G. Seshadri. 2014. Analysis, Simulation of 3-Stage Cockcroft- Walton Voltage Multiplier for High Step-Up DC-DC Converter. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 3(8): 11155-11162.

A. Elserougi, A. M. Massoud, A. M. Ibrahim, and S. Ahmed. 2015. A High Voltage Pulse-generator based on DC-to-DC Converters and Capacitor-diode Voltage Multipliers for Water Treatment Applications. IEEE Transaction on Dielectric and Electric Insulator. 22(6): 3290-3298.

DOI: http://dx.doi.org/10.1109/TDEI.2015.005376.

A. R. Thakare, S. B. Urkude, and R. P. Argelwar. 2015. Analysis of Cockcroft - Walton Voltage Multiplier. International Journal of Science and Research Publications. 5(3): 1-3.

C. Young, M. Chen, T. Chang, and C. Ko. 2011. Transformerless High Step-Up DC-DC Converter with Cockcroft-Walton Voltage Multiplier. Proceeding of 6th IEEE Conference on Industrial Electronics and Applications. 1599-1604.

DOI: http://dx.doi.org/10.1109/ICIEA.2011.5975846.

L. T. Corporation. 2001. LT1618 Constant-Current/Constant-Voltage 1.4 MHz Step-Up DC/DC Converter.




DOI: https://doi.org/10.11113/jt.v81.13411

Refbacks

  • There are currently no refbacks.


  

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.