APTES AND TEOS MODIFIED BINARY RECYCLABLE HYBRID FE3O4@GO NANOCOMPOSITE FOR PHOTOCATALYTIC DYE REMOVAL

Ghani Ur Rehman, A. F. Ismail, P. S. Goh, M. Rezaei-Dasht Arzhandi, N. Ismail

Abstract


Methylene blue (MB) is one of the industrial used organic dye and recalcitrant pollutant which creates a serious water pollution. Among the available techniques, photo degradation using light irradiation is one of the desirable choice to treat waste water. In this regard, we synthesized a binary nanocomposite of magnetite decorated with graphene oxide sheet (Fe3O4@GO) with modification of tetraethyl orthosilicate (TEOS) and 3-Aminopropyl triethoxysilane (APTES) by mechanical stirring method. The prepared nanocomposite was tested as a potential heterogeneous catalyst for degradation of methylene blue (MB) under UV irradiation. The synthesized nanoparticles were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared (FTIR), Thermogravimetric Analysis (TGA), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The characterizations confirm the successful synthesis of the nanocomposite. The photocatalytic activity of the catalysts was gradually enhanced with time intervals. The maximum MB removal efficiency of 70.06 % was achieved over Fe3O4@GO composite catalyst, remarkably higher than using pure Fe3O4 (57.56 %). The newly developed materials was successfully recovered using an external magnet.


Keywords


nanocomposite, Fe3O4@GO, APTES and TEOS, methylene blue (MB)

Full Text:

PDF

References


Rajeshwara, K., Osugib, M. E., Chanmaneec, W., Chenthamarakshana, C. R. Zanonib, M. V. B., Kajitvichyanukuld, P. and Krishnan, -A. 2008. R. Heterogeneous Photocatalytic Treatment of Organic dyes in Air and Aqueous Media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 9: 171-192.

Chen, Y. Z., Li, N., Zhang, Y. and Zhang, L. D. 2014. Novel low-cost Fenton-like layered Fe-titanate catalyst: Preparation, Characterization and Application for Degradation of Organic Colorants. Journal of Colloid. Interface. Science. 422: 9-15.

Lin, Y. et al. 2012. Ternary Graphene-TiO2-Fe3O4 Nanocomposite as a Recollectable Photocatalyst with Enhanced Durability. European Journal of Inorganic Chemistry. 28: 4439–4444.

Ke, D., Tianyou, P., Dingning, K. and Bingqing, W. 2009. Photocatalytic Hydrogen Generation using a Nanocomposite of Multi-walled Carbon Nanotubes and TiO2 Nanoparticles under Visible Light Irradiation. Nanotechnology. 20: 125603-125608.

Shouhu, X., Wanquan, J., Xinglong, G., Yuan, H. and Zuyao, C. 2009. Magnetically Separable Fe3O4/TiO2 Hollow Spheres: Fabrication and Photocatalytic Activity. Journal of Physical Chemistry C. 113: 553-558.

Andrew, M. and Stephen, L. H. 1997. An Overview of Semiconductor Photocatalysis. Elsevier. Journal of Photochemistry and Photobiology A: Chemistry. 1(108): 1-35.

Rehman, S., Ullah, R., Butt, A. M. and Gohar, N. D. 2009.Strategies of Making TiO2 and ZnO Visible Light Active. – NCB. Journal of Hazardous Materials. 2-3 (170): 560-569.

Shouhu, X., Wanquan, J., Yufeng, Z., Yanli, Z. and Xinglong, G. 2012. Super Paramagnetic Ag@Fe3O4 Core–Shell Nanospheres: Fabrication, Characterization and Aapplication as Reusable Nanocatalysts. Dalton Transactions. 41(15):4594-601.

Linley S, Leshuk T. and Gu, F. X. 2013. Magnetically Separable water Treatment Technologies and their Role in Future Advanced Water Treatment: a patent review. Clean-Soil Air Water. 12 (41):1152-6.

Xiaohui, F., Haijuan, G., Kunal, P., Hong, Z. and Xia, L. 2014. High Performance, Recoverable Fe3O4-ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol. Chemical Engineering Journal. 244: 327-334.

Zhang, Y., Zhao, Z. Y., Chen, J. R., Cheng, L., Chang, J., Sheng, W.C., Hu, C.Y. and Cao, S. S. 2015. C-doped Hollow TiO2 Spheres: in Situ Synthesis, Controlled Shell Thickness, and Superior Visible-light Photocatalytic Activity. Applied Catalysis B: Environmental. 165: 715-722.

Kim, C. H., Kim, B. H. and Yang, K. S. 2012. TiO2 Nanoparticles Loaded on Graphene/Carbon Composite Nanofibers by Electrospinning for Increased Photocatalysis. Carbon. 7 (50): 2472-2481.

Tarek A. Gad, -A., Shigeru, K., Shigeo, S. and Toshinori, K. 2009. Treatment of Synthetic dyes Wastewater Utilizing a Magnetically Separable Photocatalyst (TiO2/SiO2/Fe3O4): Parametric and Kinetic Studies. Desalination. 1-3 (244): 1–11.

Dan, W., Hongmin, M., Yong, Z., Hongying, J., Tao, Y. and Qin, W. 2015. Corallite-like Magnetic Fe3O4@MnO2@Pt Nanocomposites as Multiple Signal Amplifiers for the Detection of Carcinoembryonic Antigen. ACS Appl Mater Interfaces. 7 (33):18786-93.

Feng, L., Junjie, L., David, G. E. and Xue, D. 2004. Stoichiometric Synthesis of Pure MFe2O4 (M = Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors, Chemistry of Material. 16 (8): 1597-1602.

Eman, A. 2017. Photodegradation of Binary Azo Dyes Using Core-Shell Fe3O4/SiO2/TiO2 Nanospheres. American Journal of Analytical Chemistry. 8: 95-115.

Yitao, Z., Guangyu, H., Wen, D. and Haiqun, C. 2014. High Catalytic Activity in the Phenol Hydroxylation of Magnetically Separable CuFe2O4-reduced Graphene Oxide. Industrial & Engineering Chemistry Research. 53: 12566-12574.

Veerasubramani, G. K., Krishnamoorthy, K. and Kim, S. J. 2015. Electrochemical Performance of an Asymmetric Supercapacitor based on Graphene and Cobalt Molybdate. Electrodes. RSC Advances. 5: 16319-16327.

Kai, D., Luhua, L., Qi, L., Guangping, Z., Xiaoqin, W., Jin, B., Lingling, X. and Heng W. 2014. Sonication Assisted Preparation of Graphene Oxide/ graphitic-C3N4 Nanosheet Hybrid with Reinforced Photocurrent for Photocatalyst Applications. Dalton Trans. 43: 6295-6299.

Cao1, L. L., Yin, S. M., Liang Y. B., Zhu, J. M., Fang, C. and Chen, Z. C. Preparation and Characterisation of Magnetic Fe3O4/Graphene Oxide Nanocomposites. DOI 10.1179/1432891715Z.S1-364 0000000001571.

Wenjun, J., Quan, C., Wei, X., Mingwei. Y., Yong, C., Dionysios, D. D. and Kevin, E. O'. 2014. Cr (VI) Adsorp-tion and Reduction by Humic Acid Coated on Magnetite, Environ. Sci. Technol. 48: 8078-8085.

José, A., Jesús, M. A., Amaya, A., Monta˜na, L. and Victoria, G. 2009. Aqueous Heavy Metals Removal by Adsorption on Amine-functionalized Mesoporous silica. J. Hazard. Mater. 163: 213-221.

Mojun, Z., Maria, Z. Lerum. and Wei, C. 2011. How to prepare reproducible, homogeneous, andhydrolytically stable aminosilane-derived layers on silica, Langmuir. 28: 416-423.

Robert, G. A., Amanda, V. E., Jason, A., Claire, E. L., Dmitriy, A. K., Gregory, F. M. and Gunther, G. A. 2012. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. J. Phys. Chem. C. 116: 6289-6297.

Mithilesh, Y., Kyong, Y. R., Soo, J. P. and David, H. 2014. Mechanical Properties of Fe3O4/GO/chitosan Composites. DOI: http://dx.doi.org/10.1016/j.compositesb.2014.04.034.

Yucheng, D., Ruguang, M., Mingjun, H., Hua, C., Qingdan, Y., Yang, Y. L. and Juan A. Z. 2013. Thermal Evaporation-induced Anhydrous Synthesis of Fe3O4–graphene Composite with Enhanced rate Performance and Cyclic Stability for Lithium ion Batteries. Phys. Chem. Chem. Phys.15: 7174-7181.

Chunhui, L., Ruixue, W., Yanmin, X., Ailing, S., and Liuhe, W. 2014. Synthesis of Hexagonal and Triangular Fe3O4 Nanosheets via Seed-mediated Solvothermal Growth. Nano Res., 7 (4):536-543.

Sheng, Li., Ling, X., Hongbing, D., Xiaowen, S., Qihua, C. 2017. Remote Controlled Drug Release from Multi-functional Fe3O4/GO/Chitosan Microspheres Fabricated by an Electrospray Method. Colloids and Surfaces. B, Biointerfaces. 16 (151): 354-362.

Poonam, B., Manish, K., Pankaj, C. and Kamal, K. K. 2015. Enhanced Photocatalytic Degradation of Methylene Blue and Adsorption of Arsenic (III) by Reduced Graphene Oxide (rGO)–metal Oxide (TiO2/Fe3O4) Based Nanocomposites. RSC Adv. 5. 73249-73260.




DOI: https://doi.org/10.11113/jt.v80.11404

Refbacks

  • There are currently no refbacks.


  

Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.