Nuriah Abd Majid, Ruslan Rainis, Wan Mohd Muhiyuddin Wan Ibrahim


This paper discusses the modeling of various types of slope failure using the artificial neural network (ANN) in Penang. Slope failure areas identified by field trips. However, the existing models do not categorize the various types of slope failure, therefore the model to be developed will categorize a variety of types of slope failure has occurred The objective of the study is to model various types of slope failure using an artificial neural network (ANN). A total of 12 variables that influence the occurrence of slope failure is used to develop spatial model of slope failure. Among the factors are distant from slope failure to road, distant from slope failure to river, distant from slope failure to lineament, lithology, land use, soil series, average annual rainfall, slope aspect, slope steepness, topographic elevation (DEM), the curvature of the slope and vegetation index. The results of this study show a satisfactory performance in which the accuracy of the original model is 76.63%. The performance of the model is evaluated using independent data set of 20%, and the accuracy of 73.85%.


Slope Failure, Artificial Neural Network (ANN), GIS, spatial model, Pulau Pinang

Full Text:



Abdul Ghani Sarip. 2005. Integrating Artificial Neural Networks and GIS for Single-property Valuation. Proceedings of the 11th Annual Conference of the Pacific Rim Real Estate Society (PRRES).

Alimohammadlou, Y., Najafi, A., & Yalcin, A. 2013. Landslide Process and Impacts: A Proposed Classification Method. Catena. 104: 219e232.

Atkinson & Tatnall, A. R. L. 1997. Introduction Neural Networks in Remote Sensing. International Journal of Remote Sensing. 18(4): 699-709.

Ayalew, L., Yamagishi, H., & Ugawa, N. 2004. Landslide Susceptibility Mapping using GIS-based Weighted Linear Combination, The Case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides. 1: 73-81.

Ballabio, C., & Sterlacchini, S. 2012. Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy. Math. Geosci. 44(1): 47-70.

Bommer, J. J., Rodrı´guez, C. E. 2002. Earthquake-induced Landslides in Central America. Eng. Geol. 63: 189-220.

Cai, J. G., Zhao, J. & Hudson, J. A. 1998. Computerization of Rock Engineering Systems Using Neural Networks with an Expert System. Rock Mech. Rock Eng. 31(3): 135-152.

Caniani, D., Pascale, S., Sdao, F. & Sole, A. 2007. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards: 45: 55-72.

Carrara, A., Cardinali, M., & Guzzetti, F. 1992. Uncertainty in Assessing Landslide Hazard and Risk. ITC J. 2: 172-183.

Casagli, N., Catani, F., Puglisi, C., Delmonaco, G., Ermini, L., & Margottini, C. 2004. An Inventory-based Approach to Landslide Susceptibility Assessment and Its Application to the Virginio River Basin, Italy. Environ. Eng. Geosci. 10(3): 203-216.

Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. 2010. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation. 12(5): 340-350.

Choi, J., Oh, H. J., Won, J. S. & Lee, S. 2010. Validation of an Artificial Neural Network Model for Landslide Susceptibility Mapping. Environ Earth Sci. 60: 473-483.

Collison, A., Wade, S., Griffiths, J., & Dehn, M. 2000. Modelling the Impact of Predicted Climate Change on Landslide Frequency and Magnitude in SE England. Eng. Geol. 55: 205-218

Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. 2014. Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy). Catena. 113: 236-250

Crozier, M. J., & Glade, T. 2005. Landslide Hazard and Risk: Issues, Concepts, and Approach. In: Glade, T., Anderson, M., Crozier, M. (Eds.). Landslide Hazard and risk. Wiley, Chichester. 1-40

Cruden, D. M. & Varnes, D. J. 1996. Landslide Types and Processes, Special Report, Transportation Research Board. National Academy of Sciences. 247: 36-75.

Dahal, R. K., Hasegawa, S., Masuda, T., & Yamanaka, M. 2006. Roadside Slope Failures in Nepal during Torrential Rainfall and their Mitigation. Disaster Mitigation of Debris Flows, Slope Failures and Landslides. 503-514

Dai, F. C., & Lee, C. F. 2001. Terrain-based Mapping of Landslide Susceptibility Using a Geographical Information System: A Case Study. Can. Geotech. J. 38: 911-923.

Dai, F. C., Lee, C. F., & Ngai, Y. Y. 2002. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 64: 65-87.

Dayhoff, J.E. 1990. Neural Network Architectures: An Introduction. New York: Van Nostrand Reinhold Press.

Elder, J.P. 2003. Reaching out to America’s Immigrants: Community Health Advisors and Health Communication. American Journal of Health Behavior, 27, S196-S205.

Ercanoglu, M., & Gokceoglu, C. 2002. Assessment of Landslide Susceptibility for a Landslide-Prone Area (North of Yenice, NW Turkye) by Fuzzy Approach. Environmental Geology. 41: 720-730.

Ermini, L., Catani, F., & Casagli, N. 2005. Artificial Neural Networks Applied to Landslide Susceptibility Assessment. Geomorphology. 66: 327-343.

Fall, M., Azzam, R., & Noubactep, C. 2006. A Multi-method Approach to Study the Stability of Natural Slopes and Landslide Susceptibility Mapping. Eng. Geol. 82: 241-263.

Garrett, J. 1994. Where and Why Artificial Neural Networks are Applicable in Civil Engineering. J. Comput. Civil Eng. 8: 129-130.

Gimblett, R. H., Ball, G. L., & Guisse, A. W. 1994. Autonomous Rule Generation and Assessment for Complex Spatial Modeling. Landscape Urban Plann. 30: 13-26.

Goetz, J. N., Guthrie, R. H., & Brenning, A. 2011. Integrating Physical and Empirical Landslide Susceptibility Models Using Generalized Additive Models. Geomorphology. 129(3-4): 376-386.

Gomez, H., & Kavzoglu, T. 2005. Assessment of Shallow Landslide Susceptibility Using Artificial Neural Networks in Jabonosa River Basin, Venezuela. Eng Geol. 78(1-2): 11-27.

Gopal, S. 1998. Artificial Neural Networks for Spatial Data Analysis, NCGIA Core Curriculum in GIScience.

Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. 1999. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology. 31(1-4): 181-216.

Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.T. 2012. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 112(42): 66.

Highland, L. M., & Bobrowsky, P. 2008. The Landslide Handbook- A Guide to Understanding Landslides. Version 1.0. Geological Survey of Canada.

Hong, H., Pourghasemi, H. R. & Pourtaghi, Z. S. 2016. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison Between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology. 259: 105-118.

Hutchinson, J. N. 1995. Keynote Paper: Landslide Hazard Assessment. Proceedings 6th International Symposium on Landslides, Christchurch. Balkema, Rotterdam. 1805-1841.

IBM SPSS. 2012. Neural Networks, New Tool for Building Predictive Models. (online) 11 Dec 2015,

Kannan, M., Saranathan, E., & Anabalagan, R. 2013. Landslide Vulnerability Mapping using Frequency Ratio Model: A Geospatial Approach in Bodi-Bodimettu Ghat Section, Theni District, Tamil Nadu, India. Arabian Journal of Geosciences. 6(8): 2901-2913.

Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. 2006. A Comparative Study of Conventional, ANN Black Box, Fuzzy and Combined Neural and Fuzzy Weighting Procedures for Landslide Susceptibility Zonation in Darjeeling Himalayas. Engineering Geology. 85: 347-366.

Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P. 2006. A Comparative Study of Conventional, ANN Black Box, Fuzzy and Combined Neural and Fuzzy Weighting Procedures for Landslide Susceptibility Zonation in Darjeeling Himalayas. Eng. Geol. 85: 347-366.

Kawabata, D., & Bandibas, J. 2009. Landslide Susceptibility Mapping Using Geological Data, a DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology. 113(1-2): 97-109.

Keefer, D.V. 2000. Statistical Analysis of an Earthquake-Induced Landslide Distribution – The 1989 Loma Prieta, California Event. Eng. Geol. 58: 231-249.

Knapen, A., Kitutu, M.G, Poesen, J., Breugelmans, W., D, & Muwanga, A. 2006. Landslides in a Densely Populated County at the Footslopes of Mount Elgon Uganda, Characteristics and Causal Factors. Geomorphol. 73(1-2): 149-165.

Lee, S., & Pradhan, B. 2007. Landslide Hazard Mapping at Selangor, Malaysia Using Frequency Ratio and Logistic Regression Models. Landslides. 4: 33-41.

Lee, S., Choi, J., & Oh, H. 2009. Landslide Susceptibility Mapping Using a Neuro-Fuzzy. AGU Fall Meeting Abstracts. 1: 1075.

Lee, S., & Min, K. 2001. Statistical Analysis of Landslide Susceptibility at Yongin, Korea. Environ. Geol. 40: 1095-1113. 10.1007/s002540100310.

Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. 2004. Determination and Application of the Weights for Landslide Susceptibility Mapping Using an Artificial Neural Network, Eng. Geol, 71: 289-302.

Lin, H. M., Chang, S. K., Wu, J. H., & Juang, C. H. 2009. Neural Network-Based Model for Assessing Failure Potential of Highway Slopes in the Alishan, Taiwan Area: Pre- and Post-Earthquake Investigation. Engineering Geology. 104(3-4): 280-289.

Liu, C. S., Schnurle, P., Wang, Y., Chung, S. H., Chen, S. C & Hsiuan, T. H. 2006. Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan. Terr. Atmos. Ocean. Sci. 17: 615-644.

Maier, H. R., & Dandy, G. C. 2001. Neural Network Based Modelling of Environmental Variables: A Systematic Approach. Mathematical and Computer Modeling. 33: 669-682.

Maier, H. R. & Dandy, C. G.1996. The Use of Artificial Neural Network for the Prediction of Waterquality Parameters. Water Resources Research. 32(4): 1013-1022.

Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. 2008. Artificial Neural Networks and Cluster Analysis in Landslide Susceptibility Zonation. Geomorphology. 94: 379-400.

Mwanika, M. W., Agutu, N. O., Mbaka, G. J, Ngigi, G. T, & Waithaka, H. E. 2015. Landslide Scar/Soil Erodibility Mapping Using Landsat TM/ETM + Bands & and 3 Normalised Difference Index: A Case Study of Central Region of Kenya. Applied Geography. 64(2015): 108-120.

Neaupane, K. M., & Achet, S. H. 2004. Use of Back Propagation Neural Network for Landslide Monitoring: a Case Study in the Higher Himalaya. Eng Geol. 74: 213-226.

Nefeslioglu, H. A., Duman, T. Y. & Durmaz, S. 2008. Landslide Susceptibility Mapping for a Part of Tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology. 94: 401-418

Nuriah, A. M. 2017. Pembangunan Model Ruangan Kegagalan Cerun di Pulau Pinang, Malaysia. Tesis Doktoral, Universiti Sains Malaysia. Tidak diterbitkan.

Openshaw, S. & Openshaw, C. 1997. Artificial Intelligence in Geography. Chichester: John Wiley & Sons.

Pachauri, A. K., & Pant, M. 1992. Landslide Hazard Mapping Based on Geological Attributes. Eng. Geol. 32: 81-100.

Paliwal, M., & Kumar, U.A. 2009. Neural Networks and Statistical Techniques: A Review of Applications. Expert Systems with Applications. 36: 2-17.

Paola, J. D. & Schowengerdt, R. A. 1995. A Review and Analysis of Back Propagation Neural Networks for Classification of Remotely Sensed Multi-spectral Imagery. Int. J. Rem. Sens. 16: 3033-3058.

Parise, M., Jibson, R.W. 2000. A Seismic Landslide Susceptibility Rating of Geologic Units Based on Analysis of Characteristics of Landslides Triggered by the 17 January, 1994 Northridge, California Earthquake. Eng. Geol. 58: 251-270.

Pearl, A., & Bar- Or, D. 2009. Using Artificial Neural Networks to Predict Potential Complications during Trauma Patients’ Hospitalization Period. Medical Informatics in a United and Healthy Europe. 3: 610-614.

Peng, S. H., Shieh, M., & Fan, S. Y. 2012. Potential Hazard Map for Disaster Prevention using GIS-based Linear Combination Approach and Analytic Hierarchy Method. J. Geogr. Info. Sys. 4: 403-411.

Pistocchi, A., Luzi, L., & Napolitano, P. 2002. The Use of Predictive Modeling Techniques for Optimal Exploitation of Spatial Databases: A Case Study in Landslide Hazard Mapping with Expert System-Like Methods. Environmental Geology. 41: 765-775.

Poudyal, C. P., Chang, C., Hyun-Jo, & Lee, S. 2010. Landslide Susceptibility Maps Comparing Frequency Ratio And Artificial Neural Networks: A case Study from the Nepal Himalaya. Environ Earth Sc. 61: 1049-1064.

Pourtaghi, Z. S., & Pourghasemi, H. R. 2014. GIS-based Groundwater Spring Potential Assessment and Mapping in the Birjand Township, Southern Khorasan Province, Iran. Hydrogeol. J. 22(3): 643-662.

Pradhan, B., Lee, S., & Buchroithner, M. F. 2009. Use of Geospatial Data for the Development of Fuzzy Algebraic Operators to Landslide Hazard Mapping: A Case Study in Malaysia. Appl Geomatics. 1: 3-15.

Pradhan, B., Sezer, E., Gokceoglu, C., & Buchroithner M. F. 2010. Landslide Susceptibility Mapping by Neuro-Fuzzy Approach in a Landslide Prone Area (Cameron Highland, Malaysia). IEEE T Geosci Remote. 48(12): 4164-4177.

Pradhan, B. 2011. An Assessment of the Use of an Advanced Neural Network Model with Five Different Training Strategies for the Preparation of Landslide Susceptibility Maps. Journal of Data Scienc. 9: 65-81.

Pradhan, B., & Lee, S. 2010b. Delineation of Landslide Hazard Areas on Penang Island, Malaysia, by Using Frequency Ratio, Logistic Regression, and Artificial Neural Network Models. Environ Earth Sci. 60: 1037-1054.

Pradhan, B., & Pirasteh, S. 2010. Comparison Between Prediction Capabilities of Neural Network and Fuzzy Logic Techniques for L And Slide Susceptibility Mapping. Disaster Advances. 3(3): 26-34.

Raghuvanshi, T. K., Ibrahim, J., Ayalew, D. 2014. Slope Stability Susceptibility Evaluation Parameter (SSEP) Rating Scheme – An Approach for Landslide Hazard Zonation. J. Afr. Earth Sci. 99: 595-612.

Sarkar, S., Kanungo, D.P., Mehrotra, G.S. 1995. Landslide Hazard Zonation: A Case Study in Garhwal Himalaya, India. Mount. Res. Dev. 15(4): 301-309.

Sharma, L. P., Nilanchal, P., Ghose, M. K., & Debnath, P. 2013. Synergistic Application of Fuzzy Logic and Geo-Informatics for Landslide Vulnerability Zonation-A Case Study in Sikkim Himalayas, India. Appl Geomat. 5: 271-284.

Sharma, L. P., Patel, N., Ghose, M. K., & Debnath, P. 2014. Application of Frequency Ratio and Likelihood Ratio Model for Geo-Spatial Modelling of Landslide Hazard Vulnerability Assessment and Zonation: A Case Study from the Sikkim Himalayas in India. Geocarto International. 29(2): 128-146.

Taherynia, M. H., Mohammadi, M., & Ajalloeian, R. 2014. Assessment of Slope Instability and Risk Analysis of Road Cut Slopes in Lashotor Pass. Iran. J. Geol. Res. 2014,1e12.

Tangestani, M. H. 2004. Landslide Susceptibility Mapping Using the Fuzzy Gamma Approach in A GIS, Kakan Catchment Area, Southwest Iran. Aust J Earth Sci. 51: 439-450

Tay, L. T., Lateh, H., Hossain, M. K., & Kamil, A. A. 2014. Landslide Hazard Mapping Using a Poisson Distribution: A Case Study in Penang Island, Malaysia. Landslide Science for a Safer Geoenvironment. Springer International Publishing. 521-525.

Tjia, H. D. 1987. Geomorfologi. Kuala Lumpur: Dewan Bahasa Dan Pustaka.

Turban, E., & Aronson, J. E. 2001. Decision Support Systems and Intelligent Systems. New Jersey: Prentice-Hall.

Vanes, C. J. 1994. GIS in Landslide Hazard Zonation: A Review, with Examples from the Andes of Colombia. In: Price, M. F., Heywood, D.I. (Eds.). In: Mountain Environments and Geographic Information Systems. Taylor and Francis Publishers. 135-165.

Varnes, C. J. 1978. Slope Movement Types and Processes. (Dlm). Schuster, R.L & Krizek, R.J. (pnyt.). Landslide Analysis and Control, Special Report 176. Washington D.C: National Acad. Of Sciences. 11-33.

Wang, X., & Niu, R. 2009. Spatial Forecast of Landslides in Three Gorges Based on Spatial Data Mining. Sensors. 9: 2035-2061.



  • There are currently no refbacks.


Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.