Gema Sukmawati Suryadi, Siti Nikmatin, Sudaryanto Sudaryanto, Irmansyah Irmansyah


Study of the size effect of natural fibre from oil palm empty fruit bunches (OPEFB) as filler, onto the mechanical and physical properties of fibre reinforced biocomposites based on recycled Acrylonitrile Butadiene Styrene (ABS) has been done. The OPEFB fibres were prepared by mechanical milling and sieving to obtain medium-fibre (20 mesh) and short-fibre (100 mesh). The biocomposites have been produced by extrusion using single-screw extruder method. Mechanical properties and S of biocomposites were evaluated and compared with glass fibre (GF) filled composite which is commonly used in plastics industrial applications. The result showed that the impact strength increased with the decreasing of OPEFB fibre size, while the Young’s modulus decreased. Other mechanical properties of biocomposites with short-fibre (RABS/SF) and medium-fibre (RABS/MF) filler were not significantly different at 95% confidence interval. Impact strength of short-fibre filled biocomposite was higher than glass fibre filled composites. The surface free energy of biocomposites lower than glass fibre filled composites, but its dispersive components are higher, indicating more hydrophobic feature of the surface. The fabricated micro-fibre of OPEFB can be used as viable alternative to substitute glass fibre as filler materials of composites.


Biocomposites, empty fruit bunches, recycled ABS, impact strength, surface free energy

Full Text:



Indonesia Estate Crop Fund-Palm Oil. 2015. Annual Report 2015. Jakarta: Indonesia Estate Crop Fund-Palm Oil.

Directorate General of Agricultural Product Processing and Marketing. 2006. Pedoman Pengelolaan Limbah Industri Kelapa Sawit. Jakarta: Ministry of Agriculture Republic of Indonesia.

Shinoj, S., Visvanathan. R., Panigrahi, S. and Kochubabu, M. 2011. Oil Palm Fiber (OPF) and Its Composites: A Review. Industrial Crops and Products. 33: 7-22.

Yang, S., Castilleja, J. R., Barrera, E. V. and Lozano, K. 2004. Thermal Analysis of an Acrylonitrile–butadiene–styrene/SWNT Composite. Polymer Degradation and Stability. 83: 383-388.

Chen, S. C., Liao, W. H., Hsien, M. W., Chien, R. D. and Lin, S. H. 2011. Influence of Recycled ABS Added to Virgin Polymers on the Physical, Mechanical Properties and Molding Characteristics. Polymer-Plastics Technology and Engineering. 50: 306-11.

John, M. J. and Thomas, S. 2008. Biofibres and biocomposites. Carbohydrate Polymer. 71: 343-64.

Hassan, A., Salema, A. A., Ani, F. N. and Bakar, A. A. 2010. A Review on Oil Palm Empty Fruit Bunch Fiber-Reinforced Polymer Composite Materials. Polymer Composites. 31(12): 2079-2101.

Kalam, A., Sahari, B. B., Khalid, Y. A. and Wong, S. V. 2005. Fatigue Behaviour of Oil Palm Fruit Bunch Fibre/Epoxy and Carbon Fibre/Epoxy Composites. Composite Structures. 71: 34-44.

Mahjoub, R., Yatim, J. B. M. and Sam A. R. M. 2013. A Review of Structural Performance of Oil Palm Empty Fruit Bunch Fiber in Polymer Composites. Advances in Material Science and Engineering. 2013: 1-9.

Kueh, A. B. H. 2012. Fitting-free Hyperelastic Strain Energy Formulation for Triaxial Weave Fabric Composites. Mechanics of Materials. 47: 11-23.

Kam, C. Z., and Kueh, A. B. H. 2013. Bending Response of Cross-ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration. The Scientific World Journal. 2013.

Abo Sabah, S. H., and Kueh, A. B. H. 2014. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading. The Scientific World Journal. 2014.

Kam, C. Z., Kueh, A. B. H., Low, K. B., Wang, X. Y., & Shek, P. N. 2014. Uniaxial Compressive Stability of Laminated Composite Plate with Localised Interfacial Degeneration. Materials Research Innovations. 18(sup6): S6-109.

Jawaid, M., Khalil, H. P. S. A. and Bakar A. A. 2010. Mechanical Performance of Oil Palm Empty Fruit Bunches/Jute Fibres Reinforced Epoxy Hybrid Composites. Material Science and Engineering A. 527: 7944-7949.

Rozman, H. D., Ismail, H., Jaffri, R. M., Animullah, A. and Ishak Z. A. M. 1998. Mechanical Properties of Polyethylene-Oil Palm Empty Fruit Bunch Composites. Polymer-Plastics Technology and Engineering. 37(4): 495-507.

Singha, A. S. and Thakur, V. K. 2009. Mechanical and Physical Properties of Biofibers-Based Polymer Composites. Polymer-Plastics Technology and Engineering. 48: 736-744.

Nikmatin, S., Syafiuddin, A. and Kueh, A. B. H. 2015. Jurnal Teknologi. 77: 181-187.

Nikmatin, S., Syafiuddin, A., Nugroho, N., Utama, W., and Wismogroho, A. S. 2017. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites. MATEC Web of Conferences. 95(2017): 03001.

Thomason, J. L. 2002. The Influence of Fibre Length and Concentration on The Properties of Glass Fibre Reinforced Polypropylene: 5. Injection Moulded Long and Short Fibre PP. Composites: Part A. 33: 1641-1652.

Nikmatin, S., Syafiuddin, A. and Irwanto, D. A. Y. 2017. Properties of Oil Palm Empty Fruit Bunch-Filled Recycled Acrylonitrile Butadiene Styrene Composites: Effect of Shapes and Filler Loadings with Random Orientation. BioResources. 12(1): 1090-1101.

Rozman, H. D., Saad, M. J., and Ishak Z. A. M. 2003. Modification of Oil Palm Empty Fruit Bunches with Maleic Anhydride: The Effect on the Tensile and Dimensional Stability Properties of Empty Fruit Bunch/Polypropylene Composites. Journal of Applied Polymer Science. 87: 827-835.

Yusoff, M. Z. M., Salit, M. S. and Ismail, N. 2009. Tensile Properties of Single Oil Palm Empty Fruit Bunch (OPEFB) Fibre. Sains Malaysiana. 38(4): 525-529.

Żenkiewicz, M. 2007. Methods For The Calculation of Surface Free Energy of Solids. Journal of Achievements in Materials and Manufacturing Engineering. 24(1): 137-145.

Suryadi, G. S. 2017. Kajian Mikrostruktur, Sifat Termal, Mekanik, dan Permukaan Biokomposit Berpenguat Tandan Kosong Kelapa Sawit. Unpublished Master’s Thesis. Bogor Agricultural University, Bogor, Indonesia.

Girifalco, L. A. and Good, R. J. 1957. A theory for The Estimation of Surface and Interfacial Energies. Journal of Physical Chemistry. 61: 904-909.

Fowkes, F. M. 1964. Attractive Forces at Interfaces. Industrial & Engineering Chemiatry. 56(12): 40-52.

Grundke, K. 2005. Molecular Interfacial Phenomena of Polymers and Biopolymers. Chapter 10. Cambridge: Woodhead Publishing.

Owens, D. K. and Wendt, R. C. 1969. Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science. 13: 1741-1747.

Cwikel, D., Zhao, Q., Liu, C., Su, X. and Marmur, A. 2010. Comparing Contact Angle Measurements and Surface Tension Assessments of Solid Surfaces. Langmunir. 26: 15289-15294.

Van Oss, C. J., Chaudhury, M. K. and Good, R. J. 1988. Interfacial Lifshitz-van der Waals and Polar Interactions in Macroscopic Systems. Chemical Reviews. 88(6): 927-941.

Young, T. 1805. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London. 95: 65-87.

International Association of Wood Anatomists (IAWA). 1989. IAWA List of Microscopic Features for Hardwood Identification; by an IAWA Committee. Eds. Wheeler EA, Baas P, Gasson PE. IAWA Bull. n.s. 10(3): 219-332.

Ngan, M. A. 2005. Oil Content in Empty Fruit Bunch. Palm Oil Engineering Bulletin. 75: 21-23.

Yunos, N. S. H. M., Baharuddin, A. S., Yunos, K. F. M., Hafid, H. S., Busu, Z., Mochtar, M. N., Sulaiman, S., and Som, A. M. 2015. The Physicochemical Characteristics of Residual Oil and Fibers from Oil Palm Empty Fruit Bunches. Bio-Resource. 10: 14-29.

Karan, C. P., Rengasamy, R. S., and Das, D. 2011. Oil Spill Cleanup by Structured Fibre Assembly. Indian Journal of Fibre and Textile Research. 36: 190-200.

Sreekala, M. S., George, J., Kumaran, M. G. and Thomas, S. 2002. The Mechanical Performance of Hybrid Phenol-formaldehyde-based Composites Reinforced with Glass and Oil Palm Fibres. Composites Science and Technology. 62: 339-53.

Solikhin, A., Hadi, Y. S., Massijaya, M. Y., and Nikmatin, S. 2016. Basic Properties of Oven-Heat Treated Oil Palm Empty Fruit Bunch Stalk Fiber. BioResources. 11(1): 2224-2237.

Liang, J. Z. 2016. Predictions of Young's Modulus of Polymer Composites Reinforced with Short Natural Fibers. Journal of Macromolecular Science, Part B. 55: 566-574.

Anuar, H., Ahmad, S. H., Rasid, R. and Nik Daud, N. S. 2006. Tensile and Impact Properties of Thermoplastic Natural Rubber Reinforced Short Glass Fiber and Empty Fruit Bunch Hybrid Composites. Polymer-Plastics Technology and Engineering. 45: 1059-1063.

Sumaila, M., Amber, I. and Bawa, M. 2013. Effect of Fiber Length on The Physical And Mechanical Properties of Random Oreinted, Nonwoven Short Banana (Musa Balbisiana) Fibre /Epoxy Composite. Asian Journal of Natural and Applied Science. 2: 39-49.

Sreenivasan, V. S., Ravindran, D., Manikandan, V. and Narayanasamy, R. 2012. Influence of Fibre Treatments on Mechanical Properties of Short Sansevieria cylindrica/polyester composites. Material and Design. 37: 111-121.

Rajini, N., Winowlin Jappes, J. T., Rajakarunakaran S, and Jeyaraj, P. 2014. Journal of Composite Materials. 47(24): 3105-3121.

Shahdin, A., Morlier, J., Mezeix, L., Bouvet, C., and Gourinat, Y. 2011. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests. Shock and Vibration. 18(2011): 789-805

Vaidya, U. K., Pillay, S., Bartus, S., Ulven, C. A., Grow, D. T., and Mathew, B. 2006. Impact and Post-impact Vibration Response of Protective Metal Foam Composite Sandwich Plates. Materials Science and Engineering A. 428 (2006): 59-66.




Copyright © 2012 Penerbit UTM Press, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.