Muscle fatigue is a long lasting reduction of the ability to contract and it is the condition when produced force is reduced. Walking fast can cause muscle fatigue, which is unhealthy and it is incurable when the level of fatigue is high. Muscle fatigue during walk can be determined using several spectral variables. The amplitude and frequency of the surface EMG signal provide a more accurate reflection of motor unit pattern among these spectral variables. This research reports on the effectiveness of Empirical mode decomposition (EMD) and wavelet transform based filtering method applied to the surface EMG (sEMG) signal as a means of achieving reliable discrimination of the muscle fatigue during human walking exercise. In this research, IAV, RMS and AIF values were used as spectral variable. These spectral variables extensively identifies the difference between fatigue and normal muscle when using EMD method compared with other different wavelet functions (WFs). The result shows that the sEMG amplitude and frequency momentously changes from rest position to maximum contraction position.

Keywords: Electromyography; wavelet transform; EMD; fatigue; AIF

Abstrak

Keleitan otot adalah pengurangan tahan lama daripada keupayaan untuk mengkontrak dan ia adalah keadaan apabila daya yang dihasilkan dikurangkan. Berjalan cepat boleh menyebabkan keleitan otot, yang tidak sihat dan ia tidak boleh diubah apabila tahap keleitan adalah tinggi. Keleitan otot semasa berjalan kaki boleh ditentukan dengan menggunakan beberapa pembolehubah spektrum. Amplitud dan frekuensi isyarat EMG permukaan memberikan gambaran yang lebih tepat corak unit motor di kalangan pembolehubah spektrum. Ini laporan kajian mengenai keberkesanan kaedah empirikal penguraian (EMD) dan wavelet mengubah keadaan demak penapisan berasaskan diterapkan pada permukaan EMG (sEMG) isyarat sebagai satu cara untuk mencapai diskriminasi diperceyai keleitan otot semasa senaman berjalan dari manusia. Dalam kajian ini, IAV, RMS dan AIF nilai digunakan sebagai pembolehubah spektrum. Pembolehubah spektrum meluas mengenal pasti perbezaan antara keleitan dan otot biasa apabila menggunakan kaedah EMD berbanding dengan lain-lain fungsi wavelet berbeza (WFs). Hasil kajian menunjukkan bahawa amplitud sEMG dan kekerapan dan penting perubahan dari kedudukan ke kedudukan lain penguncupan maksimum.

Kata kunci: Electromyography; wavelet mengubah; EMD; keleitan; AIF

© 2015 Penerbit UTM Press. All rights reserved
1.0 INTRODUCTION

Electromyography signal is the representation of electrical currents generated in muscles during its contraction representing neuromuscular activities. The surface EMG (SEMG) signal measure the muscle condition (fatigue or non-fatigue) at different movement position by measuring the electrical stimulation in the muscle.

Muscle fatigue is defined as the long lasting deterioration of a performance of the human operator to create force [1]. When the fatigue level is out of the specific level serious injuries occurred. Precisely detection of the muscle fatigue provides important information to the fields of Evolvable hardware (EHW) chip development, human machine interaction, sport injuries, ergonomics, prosthetics etc.

Many researchers use different types of methods for analyzing the sEMG signal during localised muscle fatigue including the following: Time frequency analysis, Principle component analysis, Wavelet transform (WT), Higher order statistics (HOS), Frequency band analysis [2-5]. Both the techniques of HOS and WT were suitable for SEMG signal processing and these methods remove Gaussian noise (recorded noise) effectively. M. S. Hussain et al. showed that mean power frequency significantly increases when the muscle contraction level (from low contraction level to high contraction level) increases in SEMG [3]. In this study, Empirical mode decomposition and different Wavelet functions are used to decompose the SEMG signal, which are collected from rectus femories muscle during different walking condition (Slow to fast).

To analyze the amplitude components of the EMG signal, the Root mean square value (RMS) and Integral of absolute value (IAV) are the most important parameters. RMS is the most widely and preferable parameter, which reflects the physiological activity in the motor unit during contraction and at rest [6]. Moussavie et al. showed that different properties of motor unit affects the RMS values which are the firing rate, motor unit action potential (MUAP) shape, cross correlation of unit discharges and lastly the number of active units. The RMS value is linearly proportional to the muscle fiber conduction velocity [7]. Furthermore, during fatigue, RMS is also affected by the shift in power spectral density (PSD) to the lower frequencies. Particularly when using the surface electrodes to acquire EMG signals RMS value increases due to this shift. During isometric, isotonic sustained contractions, the RMS value increases over contraction time [8].

Now a days, mean frequency and median frequency are very established frequency parameter for analyzing the surface EMG signal. However, compared to these frequencies, the instantaneous frequency (IF) is more reliable in time-frequency analysis. The accuracy of IF is more particularly when studying local muscle fatigue during muscle contractions [9]. In this study Average instantaneous frequency (AIF) is used as a parameter for analyzing the surface EMG signal during muscle contraction after processing by EMD method and different types of wavelet transform method.

Many researchers used different types of mathematical parameters for determining the level of fatigue in a subject. During this study, the RMS, IAV and AIF values are performed to understand which method is the best for identifying the muscle fatigue. This research suggests that the EMD method provides the best contrast for the identification of muscle contraction during gait.

2.0 METHODOLOGY

In this study, surface EMG data are used, which are collected from right rectus femories muscle of a North American teenage male. These raw EMG data are collected from Motion lab system [10]. The raw data files are all sampled at 800 samples per second. In this research, Empirical Mode Decomposition (EMD) and Discrete wavelet transform are used for filtering the EMG data sets. Six mother wavelets are selected to be evaluated in this study. They are the second, the sixth, the eighth, forty-fourth and forty-fifth orders of Daubechies wavelet (db2, db6, db8, db44 and db45) and fourth and fifth order of the symlet (Sym4 and Sym5). In this research, Matlab 2012 is used for processing the EMG signal by using signal-processing toolbox, wavelet toolbox and user defined functions gathered into the Time–Frequency Toolbox.

2.1 Empirical Mode Decomposition (EMD)

EMD method introduced by Huang et al., which can be decomposed the complicated data set adaptively into a finite number of intrinsic mode functions [11]. For the filtering purposes, the EMD algorithm decomposes the EMG signals from right rectus femories muscle into a number of intrinsic oscillation modes. The EMD defines components of a signal in terms of IMFs [12]. The functions are called IMF when it satisfy two following conditions –

1. The number of local extrema of the signal and the number of its zero-crossings must either be equal or differ at most by one.
2. At any point in the time series, the mean value of the “upper envelope” (determined by the local maxima) and the “lower envelope” (determined by the local minima) is zero.

The EMD method decomposes the EMG signal, x(t) into different IMF components as follows:

- Firstly, determine the upper envelope and the lower envelope of the signal by using cubic spline interpolation. Upper envelope (UE) found by connecting all the local maxima smoothly. Lower envelope (LE) found by connecting all the local minima smoothly.
- Calculate the mean value (m1) of UE and LE by equation (1)

\[m = \frac{(UE + LE)}{2} \]
The first component, \(h_1(t) \) is found out by the differences between the data and the first mean value

\[
h_1(t) = x(t) - m_1(t)
\]

(2)

\(h_1 \) is an IMF if it satisfies the conditions IMF function. If \(h_1(t) \) is not an IMF, the sifting process continues \(K \) times until \(h \) fulfills the IMF criteria.

\[
h_{1k}(t) = h_1(t) - m_{1k}(t)
\]

(3)

If \(h_{1k}(t) \) satisfies the condition of this function, it is defined as \(c_1 \). The sum of difference (SD) is used as a stopping criteria to terminate the sifting process.

\[
SD = \sum_{k=0}^{K-1} \frac{|h_{k-1}(t) - h_k(t)|}{h_{k-1}(t)}
\]

(4)

Let the predetermined value for SD be 0.3. If SD is smaller than this value in the algorithm, the sifting process will be stopped. Finally, the residue component, \(r_1 \) is found out by subtracting the original data, \(x(t) \) and the \(c_1 \).

\[
r_1 = x(t) - c_1
\]

(5)

The whole procedure terminates when the last residual component is either a monotonic function or a function with only one extremum. If the stopping condition is reached, the sifting procedure stops and the final residual component is \(m \). Figure 1 shows that the EMD method decomposes the raw EMG signal into different IMF components.

Finally, reconstructed signal is obtained by adding the selected major IMF's component and mean of residue. The major IMF components are those components which carry the same frequency of the raw signal. IMF components that carry the major information of the signal represent the important component. The original signal \(S(t) \) can be represented as (6).

\[
S(t) = \sum_{i=1}^{k-1} C_i + m_n
\]

(6)

Where, \(m_n \) is the mean of final residual component, \(C_i \) is the \(i \)th IMF component.

2.2 Wavelet Decomposition

Discrete wavelet Transform (DWT) is the time filter bank which is calculated by consecutive low-pass and high-pass filtering (coefficients of filters depend on WF type) in the time domain. Let discrete sequence of input \(x[n] \). Input are passed through the filter bank pairs which involve low pass and high pass filters with impulse response \(\{l[n] \} \) and \(\{h[n] \} \) respectively. The decimation output is given below:

\[
y_l[n] = \sum_{k=\alpha}^{\infty} x[k] \cdot l[2n-k]
\]

(7)

\[
y_h[n] = \sum_{k=\alpha}^{\infty} x[k] \cdot h[2n-k]
\]

(8)

Here, \(y_l[n] \) and \(y_h[n] \) are the outputs of the detail coefficients from low pass and high pass filter respectively. The aptitude of DWT is to decompose the original signal into multi-resolution components according to a basis function called mother wavelet or wavelet function and extract the important feature from the signal [13].

![Figure 1](image-url)
In the past, some wavelet functions have been chosen by the researchers for analyzing the sEMG signal. These wavelet functions are Symlets, Haar, Daubechies, Coiflet, Morlet and maxican Hat. In 2003, Kumar et al. applied Sym4 and Sym5 to the EMG signal for identification of the muscle failure [14]. They showed that wavelet decomposition of EMG signal by using these Symlet function at level Eight and Nine (out of Ten) provide reliable discrimination of the fatigue phenomenon and it is an automatic fatigue identification system. A. Phinyomark et al. also showed that best mother wavelets for de-noising are the first order of Daubechies, BioSplines and ReverseBior [13]. In this study, all the Daubecies functions was used in decomposition level 4 and Symlet functions was in decomposition level 8. Figure 2 represent the raw EMG signal from right rectus femories muscle during normal walking speed and its denoised version by Wavelet db44.

![Figure 2](image)

2.3 Electromyographic Parameter

The RMS is very important parameter for analyzing the raw EMG signal in the time domain. However it is the valid sEMG-based fatigue assessment indices [15]. The RMS of the EMG signal calculates the square root of the average power of the raw EMG signal over a specific period.

The root mean square value is given below

$$\text{RMS} = \sqrt{\frac{1}{n} (x_1^2 + x_2^2 + \ldots + x_n^2)}$$ \hspace{1cm} (9)

Here x is a sample point with the sum taken over sample size n. According to (9), the higher the RMS value, the better the denoising performance of the filtering method.

Another parameter for analyzing the EMG signal is integral of absolute value (IAV), which is an average of absolute value of the EMG amplitude in a segment. It is calculated by equation

$$\text{IAV} = \frac{1}{N} \sum_{i=1}^{N} |x_i|$$ \hspace{1cm} (10)

Where x_i represents the EMG signal in a segment i, N is the length of the signal.

Instantaneous frequency (IF) is another type of signal parameter which provides important information about the time-varying spectral changes in EMG signals. In the case of real signal, $s(t)$ the instantaneous phase of the complex time signal, $S(t)$ using equation (11) [16]:

$$S(t) = s(t) + iH[s(t)]$$ \hspace{1cm} (11)

Where,
- $S(t)$ is the analytic signal constructed from $s(t)$ and its Hilbert transform
- $s(t)$ is the input signal and
- $H[s(t)]$ is the Hilbert Transform of the input signal

Again, the expression of the analytic signal of equation can be expressed in polar coordinates (12):

$$S(t) = A(t) \exp [i\phi(t)]$$ \hspace{1cm} (12)

Where, $A(t)$ is the amplitude and $\phi(t)$ is the instantaneous phase of the analytic signal. The IF is calculated as the derivative of $\phi(t)$. The required AIF is obtained by averaging all the IF values over full length of the signal. Figure 3 represents the sample raw EMG signal during rest muscle position (a) and instantaneous frequency spectrum over time (b).

![Figure 3](image)
3.0 RESULTS AND PERFORMANCE ANALYSIS

The effectiveness of different methods in the experimental signals was analyzed by monitoring RMS, IAV and AIF parameters.

Figure 4 represent the RMS value (in µv) of the sEMG during nine-trial walk for different Wavelet functions and EMD method. The IAV values (in µv) and AIF values (in Hz) of experimental signals of different walking exercises are represented in figure 5 and figure 6. Here in these figures all the signals of different trial walk are filtered signals with different denoising method. The recording time of sEMG signal for each trial was 15 minutes. Compared to various WFs, EMD technique provides the best contrast in RMS value, IAV value and AIF value.

In the case of sEMG, some past researches provides that Daubechies ‘functions (‘db2’, ‘db6’, ‘db8’, ‘db44’ and ‘db45’) and Symlet functions (Sym4 and Sym5) of wavelet are suitable for denoising the sEMG signal [3,17,18]. Researchers use different types of wavelet functions for differentiate fatigue and non-fatigue muscle. Therefore it is proven that the fatigue and non-fatigue muscle can be differentiated by different methods. However, this study establishes the fact that the processing of the sEMG signals by using EMD method can enhance the differenciation.

Recent ly, Hussain et al. proved that if sEMG signals are analyzed by db45, the differenciation between fatigue and non-fatigue muscle is clearly identified. The result was compared to the other four WFs (haar, db2 sym4 and sym5) within the range 50 to 70 Hz [16]. From figures 4, 5 and 6, it is observed that the EMD-based filtering method gives the best result compared with other wavelet functions filtering method on average during normal walking exercise. Moreover, two sets of sEMG data (at the resting position and at the maximum contraction position) were taken from the muscle. During this research the datas were used to analyze the performance of EMD technique of sEMG signals.

Figure 7 and 8 gives the RMS value and IAV of the output of EMD method and different wavelet functions (Daubechies at level 4 and Symlet at level 8) at rest position and maximum contraction position. Previously various research studies recommended that for sEMG denoising purpose the db function at decomposition level 4 can be used as compromise level [19]. However, these figures also provide the difference between the RMS & IAV values at muscles rest position and at muscle maximum contraction position. Similarly, figure 9 gives the difference between AIF values at rest and muscle contraction position.

From the figures it is observed that, the RMS, IAV & AIF value difference between rest and maximum contraction position is more significant for EMD method than other different wavelet functions (WF). EMD method gives the best outcome compared with other different WFs, which is exposed in figure7, figure 8 and figure 9.

Therefore, it can be seen from the above results that the best method used to process sEMG signals is the EMD method with respect to other different Wavelet methods during gait. The result of this study demonstrates that EMD method have a greater capability to differentiate between fatigue and nonfatigue sEMG over wavelet method which can be used to provide automatic fatigue detection in future in the field of sports,medical science and to prevent industrial hazards.
4.0 CONCLUSION

The result of this research demonstrates that the difference between the sEMG corresponding to relax and maximum contracting muscle is significantly identified when using EMD-based filtering method compared with other Wavelet-based denoising method at different functions. During fatiguing contractions in rectus femories muscle, the surface EMG manifestations of muscle fatigue differed in magnitude for amplitude and in frequency. The study suggests that promoted muscle contraction position (relax position to maximum position) leads to an expansion in RMS value, IAV and AIF value. In this study, EMD Model simulations confirm that the fatiguing contraction changes can cause the observed changes in EMG amplitude and instantaneous frequency. In further studies, the application of EMD method for other muscles during gait can be explored.

Acknowledgement

The author would like to thank and acknowledge the medical services of Teknologi Kasihatan dan Perubatan Research Group. This research was supported by the University Kebangsaan, Malaysia, under the Arus Pardana Research Fund (Grant No. AP-2013-001).

References

