AN in vitro STUDY OF WOUND HEALING ACTIVITY OF Ficus deltoidea LEAF EXTRACT

Nurul Ain Aqilla Wan Mustaffa\textsuperscript{a,b}, Rosnani Hasham\textsuperscript{a}, Mohamad Roji Sarmidi\textsuperscript{a}

\textsuperscript{a}Institute of Bioproduct and Development (IBD), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia  
\textsuperscript{b}Faculty of Chemical Engineering Department of Bioprocess Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Abstract

Ficus deltoidea (Mas Cotek) is one of the popular herbs that has been used traditionally to alleviate illnesses. The present study aimed to investigate the in vitro wound healing activity of F. deltoidea leaf extract on skin cell. Cell proliferative and migration assay were done on the Human Skin Fibroblast cell (HSF 1184) which were treated with different concentrations of F. deltoidea leaf extract. The data of wound closure were collected at time intervals of 0, 6, 12 and 24 hours and analyzed using ImageJ\textsuperscript{TM} software. MTT assay revealed that the F. deltoidea leaf extract could induce cell proliferation at a dose dependent manner. F. deltoidea leaf extract significantly accelerated the wound closure process in comparison to cells treated with ascorbic acid and untreated cells in scratch assay. Following 24 hours of incubation, cells treated with 50 µg/mL of F. deltoidea leaf extract showed remarkable proliferative and wound closure effect with 143.67% and 5.96%, respectively as compared to other concentrations. Collectively, these findings suggested that F. deltoidea leaf extract possesses wound healing potential and may be useful for the development of efficient wound healing drug.

Keywords: Ficus deltoidea, scratch assay, fibroblast, cell proliferative, wound healing

Abstrak

F. deltoidea (Mas Cotek) merupakan salah satu herba popular yang digunakan secara tradisional bagi menyembuhkan penyakit. Kajian ini bertujuan mengkaji aktiviti penyembuhan luka secara ‘in vitro’ oleh ekstrak daun F. deltoidea ke atas sel kulit. Ujian sel proliferatif dan asai migrasi dilakukan ke atas Sel Kulit Fibroblast Manusia (HSF 1184) yang telah dirawat dengan ekstrak daun F. deltoidea pada kepekanan yang berbeza. Data penutupan luka telah dikumpul pada selang masa 0, 6, 12 dan 24 jam dan dianalisis menggunakan perisian ImageJ\textsuperscript{TM}. Asai MTT menunjukkan ekstrak daun F. deltoidea mampu menggalakkan kesan proliferatif ke atas sel bergantung kepada dos. Ekstrak daun F. deltoidea menunjukkan keupayaan untuk mempercepat proses penutupan luka dibandingkan dengan sel dirawat dengan asid askorbik serta sel tidak dirawat pada asai calar. Selepas 24 jam tempoh pengeraman, sel dirawat dengan 50 µg/mL ekstrak daun F. deltoidea menunjukkan kesan proliferatif yang signifikan sebanyak 143.67% dan kesan penutupan luka sehingga 5.96% berbanding kepekanan lain. Secara keseluruhan, penemuan ini menunjukkan ekstrak daun F. deltoidea mempunyai potensi menyembuh luka dan mungkin berguna dalam pembangunan ubatan penyembuhan luka yang efektif.

Kata kunci: Ficus deltoidea, asai calar, fibroblast, sel proliferatif, penyembuhan luka

© 2015 Penerbit UTM Press. All rights reserved
1.0 INTRODUCTION

Ficus deltoidea belongs to Moraceae family and also known as Mas Cotek. Traditionally this plant was used to alleviate and heal illnesses such as wounds, sores, as an anti-diabetic drug and after-birth tonic [1, 2].

A number of studies have demonstrated that this plant is beneficial to human health [3]. It is believed that F. deltoidea has high antioxidant potential that assisted in scavenging free radicals [4]. A study by Hasham et al., [5] suggested that F. deltoidea possessed anti-ageing activity via the prevention of inflammation and recovery of decreased collagen synthesis.

Nowadays, high demands for the production of new natural products lead to the birth of researches on herbal plants. Numerous number of phytochemical compounds were found in F. deltoidea such as polyphenol, flavonoid, phenolic acid, tannins and vitamin C, which contributed to the anti-inflammatory effect, anti-ageing, anti-cancer antioxidant and several other activities [6, 7].

Skin damages can cause numerous problems such as microbial infections, depending on the degrees of damages [8]. Damaged skins like burns, cuts and scratches need to be treated and healed in a short period of time in order to prevent severe infections. F. deltoidea meets these criteria as it has the potential of healing the wounds as it has been used traditionally to treat wounds and rheumatism by the Malay [9].

In a previous study, Abdulla et al., [10] have used F. deltoidea extract for the topical treatment of the wounded area on rats. Their findings included the promotion of wound healing of the extract. However, to the best of our knowledge, there is no report on the effect of F. deltoidea extract in in vitro wound healing assay.

Therefore, this study was carried out in order to investigate the effectiveness of the wound healing activity in Human Skin Fibroblast (HSF 1184) cell using F. deltoidea leaf extract.

2.0 EXPERIMENTAL

2.1 Preparation of F. deltoidea Leaf Extract

F. deltoidea leaf (5 kg) were extracted using boiling water (80 L) for 2 h. After the removal of the solid parts by filtration, the extracted solution was spray-dried using a pilot spray dryer (Niro A/S, GEA Group, Soeborg Denmark). The resultant powder was used to determine the proliferative and the wound healing effects.

2.2 Cell Culture

The Human Skin Fibroblast (HSF 1184) cells were grown in a Dulbecco’s modified essential medium (DMEM), containing 10% of Fetal Bovine Serum (FBS), and 1% of penicillin-streptomycin antibiotic in a T-flask. The cells were maintained at 37°C in a humidified atmosphere of 5% carbon dioxide (CO2). The media were purchased from Life Technologies Bio Diagnostic, Selangor, Malaysia.

2.3 Radical Scavenging Activity (DPPH Assay)

DPPH assay was conducted according to the method described by Blois [11] with some modifications. Each well of the 96 micro-well plate was filled with 100-200 µL of samples (mixed with methanol to obtain the desired concentrations (µg/mL). Then, 20 µL of DPPH solution (a dissolved solution of 1.5 g DPPH and 3 mL methanol) was added to each well. The mixture was then left to incubate for 30 minutes in a dark environment at room temperature. The optical density (OD) of the wells was read by using the ELISA reader at 517 nm. The percentage of inhibition was calculated according to the following equation:

\[
\text{% Inhibition} = \frac{1 - \text{OD (DPPH + Sample)}}{\text{OD (DPPH + MeOH)}} \times 100
\]

2.4 MTT Assay

The fibroblast cells were seeded in 96-well microplates at a density of 1×10^4 cells/well with the volume of 100 µg/well DMEM complete medium and incubated overnight to allow the cells to confluence in the wells. Then, the medium was discarded and replaced with 150 µL medium containing various concentrations of treatments (ascorbic acid and F. deltoidea leaf extract) in respective wells. Those wells without treatment served as control. The plate was then incubated for 48 hours. Each concentration was prepared and tested in triplicate. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted according to the method described previously by Mosmann [12]. The cell viability was determined when the enzyme of living cells were able to reduce the yellow MTT dye into the blue-purple coloured insoluble formazan. The MTT solution (a stock solution of 5 mg/mL in PBS) (Sigma, Subang Jaya, Selangor, Malaysia) was then added (20 µL in each well) and incubated for 3-4 hours. After that, the mixture was discarded and 150 µL of DMSO was filled in each well and left at room temperature for 10-15 minutes. The absorbance of the supernatant was measured at 550 nm using ELISA microplate reader. The following cell viability was calculated using the following equation:

\[
\text{Cell Viability (\%)} = \frac{\text{Sample}}{\text{Control}} \times 100
\]

2.5 Scratch Assay

The fibroblast cells were grown at a density of 3×10^5 cells/well in a 24-well plate and cultured in DMEM complete media for 24 hours. The fibroblast cells with ≥80% of confluence were scratched using the sterilized pipette tip (yellow tip; volume 2-200 µL, 53 mm). The medium was then removed and the cells
were washed with Phosphate Buffered Saline (PBS). The cells were cultured in serum-free DMEM media (as control), 5 &micro;g/mL ascorbic acid and F. deltoidea leaf extract for 24 hours. The pictures of wound closure were taken in intervals of 0, 6, 12 and 24 hours. The percentage of wound closure was calculated by using this equation:

\[
\% \text{ Wound closure} = \left( \frac{W_{0h} - W_{xh}}{W_{0h}} \right) \times 100%
\]

where \( W_{0h} \) and \( W_{xh} \) are wound at 'x' hour; 'x' = 0, 6, 12 and 24 hours.

### 2.6 Statistical Analysis

ImageJ™ software was used to analyze the image of the scratched area. An assessment of the statistical significance was performed by using Statistical Package for the Social Sciences (SPSS 15.0) software for Student’s t-test. All results were represented as the average ± SD of the combined data from replicate experiments.

### 3.0 RESULTS AND DISCUSSION

#### 3.1 Effect of Radical Scavenging Activity of F. deltoidea Leaf Extract

The scavenging activity (DPPH assay) was performed on F. deltoidea leaf extract with ascorbic acid serving as the positive control. The results were presented as percentage of the scavenging activity in Figure 1.

![Figure 1](image1.png)

**Figure 1** The effect of DPPH scavenging activity in F. deltoidea leaf extract with ascorbic acid used as control.

The antioxidant activity of the F. deltoidea leaf extract was determined by the DPPH assay. The results were compared with the standard ascorbic acid (Figure 1) which was an efficient antioxidant agent. Different concentrations of F. deltoidea leaf extract were used in the DPPH free radical scavenging assay at the concentration of 10 to 50 &micro;g/mL (Figure 1). The F. deltoidea leaf extract showed significant effect in scavenging the DPPH free radical, reaching up to 49.59% at the concentration of 50 &micro;g/mL. These results were in agreement with the findings by Wahid et al., [2] which also reported a significant inhibition of the DPPH free radical following the treatment with F. deltoidea extracts. Furthermore, F. deltoidea is believed to have an abundance of naturally occurring antioxidants. This is due to the flavonoids and phenolic compounds present in F. deltoidea which may contribute to its strong activity in wound healing and anti-inflammations on the human epidermal [13].

#### 3.2 F. deltoidea Leaf Extract Induces Cell Viability

MTT assay was used to assess the effect of F. deltoidea leaf extract on cell proliferative activity (Figure 2). This assay is a preferable approach to investigate the cell growth and cell cytotoxicity as it measures the integrity of cell membrane by determining the mitochondrial activity through enzymatic reaction on reduction of MTT to formazan [5,14].

![Figure 2](image2.png)

**Figure 2** The effects of different concentrations of treatments (µg/mL) on cell viability (%). *p < 0.05 indicating a significant difference compared to the control; Control indicated as (Cont.); Ascorbic acid of 5 µg/mL was indicated by (As. 5)

The treatment of F. deltoidea leaf extract on different concentrations of 10 to 50 &micro;g/mL induced the cell viability in cultured fibroblast cells up to 40% in a dose-dependent manner (Figure 2). Ascorbic acid was used as the positive control in promoting cell growth. This result shows that F. deltoidea leaf extract significantly increased the cell growth of fibroblast cell lines when compared to ascorbic acid. This is in agreement with Nor Azurah et al., [14] who reported that the cell viability increased with the increased of F.deltoidea concentrations up to an optimum concentration.
3.3 Effect of *F. deltoidea* Leaf Extract on Fibroblast Cells in Wound Scratch Test

The effect of *F. deltoidea* leaf extract on the migration of fibroblast were tested in an in vitro wound healing model, in which scraped wounds were generated in a confluent cell cultured. Cells with or without *F. deltoidea* treatment were allowed to migrate into the denuded area from 0-24 hours at 37°C. The scratch test results were shown in Figure 3 and 4.

From Figure 3 and 4, it was demonstrated that cells treated with *F. deltoidea* started to migrate into the denuded area at 6 hours of treatment and scratch closure was almost completed at 24 hours when treated with 50 μg/mL concentration of extract. In contrast, untreated cells showed less motility as indicated by less migrated cells in the denuded area at 24 hours of incubation.

The 50 μg/mL concentration of *F. deltoidea* leaf extract reduced the wound area faster than the other concentrations. These results supported the hypothesis that high antioxidant and proliferative activity of *F. deltoidea* were associated with a high healing property. This is in agreement with Abdulla et al., findings which revealed the wound healing effect of *F. deltoidea* extracts in in vivo studies [10]. The effectiveness of the wound healing effects might be due to the regulation of pro-collagen 1 expression and anti-inflammatory activities of *F. deltoidea* as reported by Hasham et al. [5].

![Graph](image)

**Figure 3** The effect of various concentrations (μg/mL) of *F. deltoidea* leaf extract on the percentage of wound closure (%) of scratched fibroblast cells; Control indicated by (Cont.); Ascorbic acid indicated by (As. 5)
CONCLUSION

F. deltoidea leaf extract was demonstrated to contain a rich source of naturally occurring antioxidants as it showed a significant effect in inhibiting DPPH radical at optimum concentrations. F. deltoidea leaf extract was also shown to induce cell viability and promoting cell growth in fibroblast cells. The presence of F. deltoidea leaf extract promoted the wound healing activity in in vitro fibroblast cells.

In conclusion, 50 μg/mL concentration of F. deltoidea was the best concentration for treatments
of wound healing activity as it showed the fastest wound closure compared to the other concentrations of treatments used. The present study demonstrated that F. deltoidea leaf extract stimulated fibroblast cell growth and played an important role in repairing cell tissue. This study supported the claim that F. deltoidea has the wound healing properties. Finally, these findings suggested that further research on identifying the relevant bioactive compounds that leading to the wound healing activity should be carried out as F. deltoidea leaf extract showed a great potential for the pharmaceutical industries.

Acknowledgement

The authors would like to acknowledge the Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for the financial support under the Research University Grant (RUG) (vote number 4F614 and 4H019). An appreciation is also dedicated to the Cell Culture Laboratory, Faculty of Chemical Engineering, Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor.

References


