THEORETICAL AND EXPERIMENTAL STUDIES OF CORROSION INHIBITION OF THIOHENE-2-ETHYLAMINE ON MILD STEEL IN ACID MEDIA

Bishir Usmana,b, Hasmerya Maarofa, Hassan H. Abdallaha,c, Rosmahida Jamaludina, Mohamed Noor Hasana, Madzlan Aziza,d*

aDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Darul Ta’azim, Malaysia
bDepartment of Pure and Industrial Chemistry, Faculty of Science, Bayero University, Kano. P. M. B. 3011, Kano, Nigeria
cDepartment of Chemistry, Education College, Salahaddin University, Erbil, Iraq
dAdvance Membrane Technology Centre, Universiti Teknologi, Malaysia, 81310, UTM Johor Bahru, Johor Darul Ta’azim, Malaysia

*Corresponding author
madzlan@utm.my

Abstract
Corrosion inhibition of mild steel in 0.5M H\textsubscript{2}SO\textsubscript{4} at 30°C with thiophene-2-ethylamine (TEA) as inhibitor has been assessed by quantitative structure activity relation (QSAR) model and quantum chemical calculations. The results were evaluated using weight loss and electrochemical methods such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed good performance of TEA in corrosion protection which behaves as mixed inhibitor from PDP. The micrograph from FESEM and EDX dot mapping showed that the inhibitor adsorbed onto the metal surface with different distribution for S, C and N atoms which indicate less damage on the metal surface in the presence of TEA.

Keywords: Corrosion inhibitor, QSAR, quantum chemical calculation, electrochemical methods, Thiophene -2-ethylamine

Abstrak
Perencatan kakisan keluli lembut dalam 0.5M H\textsubscript{2}SO\textsubscript{4} pada 30°C dengan thiofena-2- etilamina (TEA) sebagai perencat telah dinilai dengan model kuantitatif berhubung aktiviti struktur (QSAR) dan pengiraan kimia kuantum. Keputusan telah dinilai menggunakan kaedah kehilangan berat dan kaedah elektrokimia seperti polarisasi potentiodynamik (PDP) dan spektroskopi impedans elektrokimia (EIS). Hasil kajian menunjukkan prestasi baik TEA dalam perlindungan kakisan yang berkelakuan sebagai perencat pencampuran PDP. Mikrograf dari FESEM dan EDX pemetaan dot menunjukkan bahawa perencat terserap ke dalam permukaan logam dengan pengagihan berbeza untuk atom S, C dan N yang menunjukkan kerosakan yang kurang pada permukaan logam dengan kehadiran TEA.

Kata kunci: Perencat kakisan, QSAR, pengiraan kuantum kimia, kaedah elektrokimia, Thiofena-2-etilamina

© 2015 Penerbit UTM Press. All rights reserved
1.0 INTRODUCTION

Corrosion protection processes for mild steel in acidic media are found to be significant [1]. The industrial application of acid for example sulphuric acid and hydrochloric acid in acid pickling, industrial cleaning, descaling and acidization of wells are found to be efficient and economically favorable [2]. The most common method for corrosion control is the use of chemical for corrosion inhibition [3, 4]. Heterocyclic compounds containing O, N, S and P have attracted many researchers and proved to be good in corrosion protection [5]. Today, the study of thiophene and its derivatives as corrosion inhibitors is a good area of research [6]. This is due to the nature of their molecular structure, which contain S and the aromaticity is closer to that of benzene, hence has tendency to donate electron which give good corrosion inhibition efficiency.

Computational method have been used and proved to be powerful tool for studying the relationship between molecular structure and corrosion inhibition performance of molecular compound [7]. However, quantitative structure activity relationship (QSAR) and Quantum chemical calculation are found to be good methods in predicting the correlation between molecular structure and corrosion inhibition on metal surfaces prior to experimental evaluation [8, 5].

Thiophene-2-ethylamine (TEA) is a thiophene based compound with molecular structure containing N and S atoms with pi-electron which have higher tendency to donate electron to the empty d-orbital of the metal atom. The aims of this study are to predict the corrosion inhibition performance of TEA on mild steel in acidic media using QSAR and to evaluate the predicted results with quantum chemical calculations, electrochemical methods and surface analysis using FESEM, EDX and optical microscope. The structure of TEA is presented in Figure 1.

![Figure 1 Molecular structure of thiophene-2-ethylamine](image)

2.0 EXPERIMENTAL

2.1 QSAR

QSAR model was generated and used to predict the corrosion inhibition efficiency of thiophene-2-ethylamine. The molecular structure were generated and standardized by optimization using Austin Model one (AM1), with molecular orbital Package (MOPAC). Dragon software version 6.0 was used to generate molecular descriptors and Matlab version 7.9 for statistical analysis as described elsewhere [9].

2.2 Quantum Chemical Calculations

Quantum chemical calculations were carried out using Gaussian09 software. Density functional theory (DFT) [3], was used to calculate and obtain the quantum chemical descriptors. The optimization of the molecules was performed using DFT at Becke three Yarg and Parr with 6-311G++(d,p) basis set as B3LYP/6-311G++(d,p) [4, 5].

2.3 Electrochemical Method

The potentiodynamic polarization measurements were carried out using three electrodes namely working electrode (WE), reference electrode (RE) and counter electrode (CE). Polarization measurements were carried out using Autolab PGSTAT 30 model and VerstaSTAT 3.50 model in computer control, the analysis were carried using GPES and FRA.

2.4 Potentiodynamic Polarization

Before the polarization the mild steel sample was prepared with the dimension of (2 cm x 2 cm x 2 mm). The sample was ground and polished with emery paper of grade 240, 400 and 1000 respectively and washed with distilled water followed by acetone and dried with air and kept in desiccators before application. The polarization parameters used are scan rate of 5mVs⁻¹ with the potentiostart range of ±250mV at open circuit current (OPC) with steady time of 15 minutes. The inhibition efficiency at a given concentration was calculated using Equation 1, [10].

\[
\%IE = \frac{I_o - I}{I_o} \times 100
\]

(1)

Where \(I_o \) and \(I \) are the current density with and without TEA.

2.5 Electrochemical Impedance Measurements

Electrochemical impedance measurements were also carried out using VerstaSTAT 3.47 at open circuit potential (EOCP) of 10 mV over a frequency range of 100kHz -10Hz peak to peak and the \(\%IE \) was obtained using Equation 2. The amplitude was measured at 30s with temperature of 30°C. The impedance data were analyzed and obtained the fitted circuit using ZsimpWim 3.10 program.

\[
\%IE = \frac{R_{ct} - R}{R_{ct}} \times 100
\]

(2)

Where \(R_{ct} \) and \(R \) are charge transfer without and with inhibitor.

2.6 Weight Loss

Weight loss measurements were performed in a 250 mL beaker at 30°C. The solution volume used is 250 mL and the mild steel was weighed and immersed in the solution for 1 hr after the mild steel sample was
retrieved and washed with distilled water and rinsed with ethanol and acetone and dried and reweighed and the %IE was obtained using Equation 4.

\[\%IE = \frac{W_{un} - W_{in}}{W_{un}} \times 100 \] \hspace{1cm} (4)

3.0 RESULTS AND DISCUSSION

The molecular descriptor generated for QSAR model building are presented in Table 1. Considering the QSAR model predictive ability and the number of descriptor. A good model was obtained for TEA using partial least square analysis given in Equation 5 and 6.

\[\%IE = -135.541 + [-8.4374(\text{SpMad}_L)] + [6.8467(\text{MATS4M})] + [-0.497(\text{RDF010S})] + 41.111(\text{R1p}) \] \hspace{1cm} (5)

\[\%IE = -88.246 + [-9.881(\text{MATS4M})] + 57.272(\text{SpMax3-Bh(m)}) \] \hspace{1cm} (6)

\[R^2 = 0.9920, \hspace{0.2cm} R^2_{cv} = 0.5724, \hspace{0.2cm} R^2_{pre} = 0.5999, \hspace{0.2cm} N=11 \]

\[R^2 = 0.9295, \hspace{0.2cm} R^2_{cv} = 0.8481, \hspace{0.2cm} R^2_{pre} = 0.5114, \hspace{0.2cm} N=11 \]

Where \(R^2 \) is the regression coefficient, \(R^2_{cv} \) is the regression coefficient of cross validation and \(R^2_{pre} \) is the regression coefficient of prediction and RMSEC is the root mean square error of calibration. The models show significant statistical quality. The selected descriptors in Equation 1 and 2 are presented in Table 1.

Comparing Equation 1 and 2 the values of regression coefficient varies, with Equation 2 has larger value of \(R^2 \), \(R^2_{cv} \) and RMSEC and lower value of \(R^2_{pre} \) which gives good statistical quality. The values of the descriptors presented in Table 1 explain the effect of \(\text{SpMad}_L \), \(\text{MATS4M} \), \(\text{SpMax3-Bh(m)} \), \(\text{RDF010S} \) and \(\text{R1p} \) descriptors on corrosion inhibition performance of TEA.

Therefore, the models were used to predict the corrosion inhibition efficiency of TEA as presented in Table 2. The results indicate higher %IE in the first model as 69.8% with second model having 66.1%, with 5% difference which shows the inhibition efficiency is similar. However, it has been stated that a model with few number of descriptors is considered as the best model [11, 12].

3.1 Quantum Chemical Calculation

The optimized geometry of the TEA molecules is shown in Figure 2. The values of the quantum chemical descriptors calculated are presented in Table 3. It can be observed that the values of \(E_{\text{HUMO}} \), \(E_{\text{LUMO}} \), \(\Delta E_{\text{gap}} \) describe the ability of the compounds to release and accept electron from the metal d-orbital [13], therefore, higher value of \(E_{\text{HUMO}} \) with lower value of \(E_{\text{LUMO}} \) and \(\Delta E_{\text{gap}} \) the better the release and acceptance of electron by TEA, hence the \(E_{\text{HUMO}} \) (-0.241au), \(E_{\text{LUMO}} \) (-0.023) and \(\Delta E_{\text{gap}} \) (0.218au) give good inhibition efficiency. According to Koopman’s theory [13]: electronegativity (X), ionization energy (I), and electron affinity (A) are given as \(A = -E_{\text{LUMO}}, I = E_{\text{HUMO}} \) while Electron negativity (X), hardness (\(\eta \)) and softness (S) were given as \(X= |I+A|/2, \eta = |I-A|/2, \ S = I/\eta \) or \(2/(I-A) \).

It has been established that there is no relationship between dipole moment with %IE experimentally [14].

Table 1 Molecular descriptors and their values

<table>
<thead>
<tr>
<th>Compound and abbreviation</th>
<th>Molecular descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds</td>
<td>SpMad_L</td>
</tr>
<tr>
<td>Thiophene-2-ethylamine</td>
<td>TEA</td>
</tr>
</tbody>
</table>

Table 2 The predictive ability of the models for the proposed compound

<table>
<thead>
<tr>
<th>Compounds</th>
<th>%IE compound predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiophene-2-ethylamine</td>
<td>69.8 (A) 66.1 (B)</td>
</tr>
</tbody>
</table>

\(A= \text{Model 1 with 5 descriptors, } B= \text{Model 2, with 2 descriptors} \)
Similarly η and S measured the stability of molecules and hard molecules have higher ΔE_{gap} while soft molecules have smaller ΔE_{gap}, and molecules with lower value of η and higher value of S tend to give good corrosion inhibition efficiency [14]. Lower values of A, I, and higher X and TE give better inhibition efficiency [15]. The values of X, I, A, S and η for TEA are given as 0.143, 0.229, 0.023, 4.362, 0.229 and -687.0 au respectively gives chance for TEA to be good corrosion inhibitor.

3.2 Electrochemical Methods

The performance of TEA on the electrochemical polarization behavior of mild steel in 0.5M H_2SO_4 has been studied by polarization measurements and the calculated parameters such as I_{corr}, E_{corr}, b_a, b_c and $\%IE$ from the Tafel plot as in Figure 3. The results are presented in Table 4. It can be observed that from the results in Table 4 both cathodic and anodic were inhibited after addition of TEA to 0.5 M H_2SO_4 solution from the result it shows that TEA is a mixed inhibitor which fall 0.147 to 0.280 mV/ SCE within when compared to blank. It has been stated that an inhibitor can be considered as anodic or cathodic inhibitor if it falls within 85mV/ SCE compared to blank [16]. Hence TEA gives $\%IE$ of 69.8%, with lower corrosion rate. As presented in Table 4.

Table 3 Values of quantum chemical descriptors

<table>
<thead>
<tr>
<th>Descript.</th>
<th>HUMO (au)</th>
<th>LUMO (au)</th>
<th>ΔE_{gap} (au)</th>
<th>μ (debye)</th>
<th>X (au)</th>
<th>I (au)</th>
<th>A (au)</th>
<th>S (au)</th>
<th>η (au)</th>
<th>TE (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>values</td>
<td>-0.241</td>
<td>-0.023</td>
<td>0.218</td>
<td>0.844</td>
<td>0.143</td>
<td>0.229</td>
<td>0.023</td>
<td>4.362</td>
<td>0.229</td>
<td>-687.0</td>
</tr>
</tbody>
</table>

Table 4 Polarization data of mild steel in 0.5M H_2SO_4 with and without addition of inhibitor at 303k for substituted thiophene derivatives

<table>
<thead>
<tr>
<th>Compound</th>
<th>C(M)</th>
<th>E_{corr}/mV</th>
<th>b_a/mV(dec.)</th>
<th>b_c/mV(dec.)</th>
<th>C.R in mm/year</th>
<th>I_{corr}(μA/cm2)</th>
<th>$%IE$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0.5</td>
<td>-453</td>
<td>443</td>
<td>427</td>
<td>9.098</td>
<td>783.3</td>
<td>-</td>
</tr>
<tr>
<td>TEA</td>
<td>102</td>
<td>-366</td>
<td>147</td>
<td>280</td>
<td>2.75</td>
<td>236.8</td>
<td>69.8</td>
</tr>
</tbody>
</table>
The effect of TEA as corrosion inhibitor in 0.5M H$_2$SO$_4$ from Nyquist plot presented in Figure 4a shows a change in the diameter of the semi circle compared to the blank; this is attributed to the addition of the TEA which increases the thickness of the surface due to the formation of a layer on the metal surface. Hence gives higher resistance charge transfer (R_{ct}) which decreases the capacitance double (C_{dl}) [17]. Therefore, bode plot presented in Figure Nyquist plot (4a) and bode plots (4b) and (4c) clearly explained the formation of protective layer on the metal surface due to change in size of the semi circle plots. The percentage inhibition efficiency of TEA is presented in Table 5 the result was calculated using Equation 4.

Table 5 Electrochemical impedance spectroscopy parameters

<table>
<thead>
<tr>
<th>Compound</th>
<th>R_e (Ω cm2)</th>
<th>R_{ct} (Ω cm2)</th>
<th>$C_{dl} \times 10^{-4}$ (μFcm$^{-2}$)</th>
<th>%IE</th>
<th>Equivalent Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>17.6</td>
<td>11.4</td>
<td>7.75</td>
<td>-</td>
<td>$R(\infty)$</td>
</tr>
<tr>
<td>TEA</td>
<td>11.8</td>
<td>87.4</td>
<td>4.91</td>
<td>87.0</td>
<td>$R(QR)$</td>
</tr>
</tbody>
</table>

3.3 Weight Loss

Corrosion rate, surface coverage and %IE for mild steel in 0.5M H$_2$SO$_4$ in the absence and presence of 0.01M TEA are presented in Table 6. It can be deduced that the presence of TEA reduced the corrosion rate and with surface coverage of 0.00060 g/cm2hr, this is due to the formation of layer on the metal surface and gives inhibition efficiency of 78.0% at 30°C as shown in Table 6.
Table 6

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Weight loss (g)</th>
<th>CR (g/cm²/hr)</th>
<th>Θ</th>
<th>%IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>H₂SO₄</td>
<td>0.011</td>
<td>0.02750</td>
<td>-</td>
</tr>
<tr>
<td>TEA</td>
<td></td>
<td>0.0024</td>
<td>0.00060</td>
<td>0.78</td>
</tr>
</tbody>
</table>

3.4 Surface Analysis

The surface micrograph were analyzed using FESEM, optical microscope and EDX technique to obtain information about the adsorption and formation of layer on the metal surface in the presence and absence of 0.01M TEA as shown in Figure 5 and 6.

The destruction of the metal surface can be observed on Figure 5a and 5c with acid while due addition of TEA the surface of the metal become smooth and less destructive as shown in Figure 5b and 5d.

![Figure 5 FESEM- and OM micrograph of metal surface atom (a and c) H₂SO₄ (b - C) TEA](image)

The EDX dot mapping was employed to check and study the elemental composition of TEA involved in the inhibition process on metal surface. The distribution of elemental composition of the inhibitor is presented in Figure 6a to g, the EDX spectrum shows the element such S, N, C and O were adsorbed on to metal surface in the presence of TEA.

![EDX dot mapping images](image)
4.0 CONCLUSION

QSAR model proved to be a good tool for searching new corrosion inhibitors from the molecular structure using new molecular descriptor from dragon software which contain multiple properties.

The results from quantum chemical calculation was found to be consistence with predict result by QSAR model. Potentiodynamic polarization results evaluate TEA as mixed inhibitor and the mechanism of the adsorptions on to the mild steel were explained clearly by EIS as chemical adsorption and all the electrochemical and weight result were found to be consistence with predicted results.

FESEM, optical microscope and EDX proved the existence of corrosion on mild steel in 0.5M H$_2$SO$_4$ and the inhibition performance of TEA.

Acknowledgement

The authors thank Research Management Centre (RMC), Vot No. 4F257, Computational Chemistry Research and electrochemical and material Research group Universiti Teknologi Malaysia. The support of Bayero University, Kano, Nigeria and McArthur Research grant is gratefully acknowledged.

References

