Simulations of Two Patterns Fiber Weaves Reinforced in Rubber Actuator

Ilia Najaa Aimi Mohd Nordin¹, A. A. M. Faudzi², M. R. M. Razif³, E. Natarajan⁴, S. Wakimoto⁵, K. Suzumori⁶

¹Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
²Center for Artificial Intelligence and Robotics (CAIRO), University Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
³School of Mechanical Engineering, Kolej Universiti Linton, Mantin, Negeri Sembilan, Malaysia
⁴Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan

*Corresponding author: athif@fke.utm.my

Abstract

Over recent years, studies on soft mechanism are rapidly being paid to attention especially in pneumatic actuator field. A good actuator should be able to provide sufficient force and flexibility in movement, hence bending motion is a vital criteria needed in soft robotic actuation. In this paper, a solution to soft bending pneumatic actuator is proposed in which several patterns fiber weave designs are introduced. The objectives of the simulations is to investigate the different weave patterns combination of fiber reinforced actuator models that yields the best bending characteristics and its relation to the contraction or extension characteristics shown by single weave pattern actuator models. From the results, when two patterns of fiber weave were attached together to form a sleeve, significant bending were obtained from most of the models simulated. Large bending resulted from combined two patterns fiber weave models were achieved when maximum contraction and extension characteristics exhibited by both fiber weave patterns.

Keywords: Soft actuator; pneumatic artificial muscles; McKibben actuator

1.0 INTRODUCTION

Soft actuators have been vigorously utilized in many applications in modern society these days. Soft actuation mechanism driven by these type of actuators are very useful in various robotics and automation applications, for example; in object transportation, biomimetic, endoscopy insertion, micro manipulation of handling micro scale object, robotic gripper, power support and assisting rehabilitation exercises. The existing developed soft actuators have shown promises in producing soft movements to objects and human [1-22].

A soft actuator generally has simple structure, high compliance, high power to weight ratio, high water resistance, lightweight and requires low production cost [2, 3, 6-8, 11]. It is usually being made from soft materials such as rubber and silicone. The actuator functions due to elastic deformations of extension and contraction of the elastic structure from silicone or rubber when air is pressurized into it [2-3, 11-12].

Knowing the capability of pneumatic soft actuator in producing soft movement, improvement in achieving better bending and actuating force suitable to applications still need to be done, thus has attracted many researchers to dig deeper into this area. There are many existing methods to exhibit good bending and force characteristics. The approaches towards designing bending actuator have been mainly based on chambers-type [3, 8], bellow shape-type [4, 6, 7, 22] and fiber-reinforced-type [2, 5, 22].

Bending soft actuator that works based on the principle of the two internal chambers was achieved by Suzumori, Endo et al. [3]. The bending movement was utilized for a robot that mimics the manta features to repeatedly flap in two directions. The robot was tested and it can lively swim in the water.

Bellow shape-type actuator invented by K. Ogura et al. was able to produce large curling motion deformation in two directions. The actuator can facilitate the curling motion as a miniature robot hand for handling fragile fish eggs [6-7].

Another bending technique which uses fiber reinforced weaving was able to create bending motion for application that requires high force [12]. The actuator works by pressurizing both contracted and extended type actuators which these actuators are bound together.

Besides being used as a biomimetic robot [3] and gripper [6-7], soft actuator designs are also used in medical application. The actuator was developed using silicone rubber material and aimed to help doctors in performing colonoscopy insertion. The prototype of the large intestine endoscope has shown capability of changing its own stiffness, which has made colonoscopy insertion procedure to be much faster and accurate. It is able to avoid overload for inner colon overload and realize safety check. The actuator incorporates fiber-reinforced weaving technique inspired by McKibben artificial muscle to produce this stiffness-change device [5].

The last two soft actuator designs incorporates the fiber reinforced weaving technique inspired by McKibben artificial...
The McKibben artificial muscle was first invented by Joseph L. McKibben and used as an orthotic appliance for polio patients. It is well known to be light in weight, able to produce smooth, accurate and fast response even significant force at its maximum expansion [13].

In recent years, the effects of braided fiber angles to soft actuator contraction and extension motion were studied [5, 12, 17, 20]. Generally, the McKibben actuator will contract axially when air pressure is inserted. Contraction ratio can be obtained from the force equation from Schulte model [17] described in Equation (1), as below:

\[F = \frac{\pi}{4} D_0^2 P \left(\frac{1}{\sin \theta_0} \right)^2 \left[3(1 - \varepsilon)^2 \cos^2 \theta_0 - 1 \right] \tag{1} \]

Where:
- \(F \) = contraction force,
- \(D_0 \) = actual diameter of the actuator in initial state,
- \(P \) = applied pressure,
- \(\theta_0 \) = initial fiber angles and
- \(\varepsilon \) = contraction ratio.

In this equation, the length of actuator is assumed to be infinity and the fiber is able to resist stretching. The friction between rubber tube and braided fibers, and the elasticity of the rubber tube will not affect the force generated.

The McKibben-type artificial muscle actuator begins to contract when compressed air is provided to the actuator [17]. The contraction force is decreasing as contraction increases. The contraction ratio, \(\varepsilon \) [5, 17] when the contraction force is 0N, is described in the following equation:

\[\varepsilon = 1 - 1/\sqrt{3} \cos \theta_0 \tag{2} \]

Calculation based on Equation (2) shows that fiber angles of \(0^\circ \leq \theta_0 \leq 54.7^\circ \) will result in positive contraction ratio depicting existence of contraction in length. Whereas fiber angles \(90^\circ \geq \theta_0 \geq 54.7^\circ \) will result in negative contraction ratio which describe extension in length. When the fiber angle is 54.7°, the contraction ratio is 0 which shows that there is no contraction or extension in length. Figure 1 shows the initial and after conditions of the artificial muscles actuator after being pressurized with 1.5MPa of air. In Figure 1, the actuators were fabricated with fiber weave of 66.5°, 54.7°, 23.5° respectively (top to bottom). Figure 1(a) shows the actuators condition before pressure was applied. The after conditions of the first actuator, as in Figure 1 (b) shows an increment in length while the third actuator shows decrement in length resulting from contraction motion of its body. However, the second actuator does not show any changes in length but stiffness change was realized. The results proved that the contraction and extension of a single chamber actuator with single weave fiber angle reinforcement depends on the fiber weave angles.

The McKibben artificial muscle was first invented by Joseph L. McKibben and used as an orthotic appliance for polio patients. It is well known to be light in weight, able to produce smooth, accurate and fast response even significant force at its maximum expansion [13].

In recent years, the effects of braided fiber angles to soft actuator contraction and extension motion were studied [5, 12, 17, 20]. Generally, the McKibben actuator will contract axially when air pressure is inserted. Contraction ratio can be obtained from the force equation from Schulte model [17] described in Equation (1), as below:

\[F = \frac{\pi}{4} D_0^2 P \left(\frac{1}{\sin \theta_0} \right)^2 \left[3(1 - \varepsilon)^2 \cos^2 \theta_0 - 1 \right] \tag{1} \]

Where:
- \(F \) = contraction force,
- \(D_0 \) = actual diameter of the actuator in initial state,
- \(P \) = applied pressure,
- \(\theta_0 \) = initial fiber angles and
- \(\varepsilon \) = contraction ratio.

In this equation, the length of actuator is assumed to be infinity and the fiber is able to resist stretching. The friction between rubber tube and braided fibers, and the elasticity of the rubber tube will not affect the force generated.

The McKibben-type artificial muscle actuator begins to contract when compressed air is provided to the actuator [17]. The contraction force is decreasing as contraction increases. The contraction ratio, \(\varepsilon \) [5, 17] when the contraction force is 0N, is described in the following equation:

\[\varepsilon = 1 - 1/\sqrt{3} \cos \theta_0 \tag{2} \]

Calculation based on Equation (2) shows that fiber angles of \(0^\circ \leq \theta_0 \leq 54.7^\circ \) will result in positive contraction ratio depicting existence of contraction in length. Whereas fiber angles \(90^\circ \geq \theta_0 \geq 54.7^\circ \) will result in negative contraction ratio which describe extension in length. When the fiber angle is 54.7°, the contraction ratio is 0 which shows that there is no contraction or extension in length. Figure 1 shows the initial and after conditions of the artificial muscles actuator after being pressurized with 1.5MPa of air. In Figure 1, the actuators were fabricated with fiber weave of 66.5°, 54.7°, 23.5° respectively (top to bottom). Figure 1(a) shows the actuators condition before pressure was applied. The after conditions of the first actuator, as in Figure 1 (b) shows an increment in length while the third actuator shows decrement in length resulting from contraction motion of its body. However, the second actuator does not show any changes in length but stiffness change was realized. The results proved that the contraction and extension of a single chamber actuator with single weave fiber angle reinforcement depends on the fiber weave angles.

The objective of the paper is to investigate different weave patterns combination of fiber reinforced actuator models that yields the best bending characteristics and its relation to the contraction/extension characteristics shown by single weave pattern actuator models. Various fibers angles and patterns were tested and the displacement results from the actuator models were compared.

The analyses were carried out as static analysis using numerical solutions from the Finite Element MARC Mentat software. Until present, there are several studies that use MARC software in handling material’s nonlinearity, usually for large deformation cases. Most of them proved good agreement between experimental and simulation results [2, 3, 5-7].

2.0 DESIGN CONCEPT

Study done by [12] has proved that fiber weave angle of 23.5° the will lead to contraction and 66.5° will result in extension of the actuator length and the attachment of both actuators; contracted and extended soft actuators will bend the whole body to the contracted actuator side. Hence, it is expected that by attaching two different weave angles reinforced to a single chamber soft actuator will also produce bending motion.

Fiber reinforcement to the inner rubber layer of the actuator’s chamber with two patterns fiber weave on each half of its cylindrical tube connected at both ends to fittings is proposed and is illustrated in Figure 2. The method of combining two different angles of fiber reinforced around a single chamber soft actuator has been experimentally proven in [15] that the design can produce bending motion.

The bending actuator design was inspired from the principles of contraction and extension of artificial muscle. In Figure 3, fiber weave angle \(\theta_1 \) represents the angle at half one side of the actuator, predicted to produce contraction motion while \(\theta_2 \) at the other half side of the body is anticipated for extension motion. With contraction and extension motion acting on single chamber actuator, the body should bend to the contracted side.
3.0 SIMULATION MODEL

In this paper, the actuators were modeled as three layers cylindrical structure, same with actuators in [14, 15]. However, different rubber and fiber materials were used. In this case, silicone rubber KE1603 A-B rubber and Nylon fiber were selected due to the realibility of Mooney-rivlin property for silicone rubber and linear property for Nylon fiber [2, 3, 5-7]. As shown in Figure 3; the first inner layer is modeled as silicone rubber, second is weave layer from Nylon and outer is from the same type silicone rubber. The thickness of inner rubber layer is 2 mm and outer layer is 1 mm. The total length of actuator is 170 mm including caps fittings at both end with each of them 10 mm length.

Bending actuators presented in this paper are different from the studies in [14,15]. Actuator in [15] has similar dimension like actuator proposed in this paper but the fiber angles 84° and 79° cannot be modeled due to modeling technique restriction. Plus, different materials were used in [14] and [15] which is natural rubber weaved by aramid fiber, and Silastic P1 rubber weaved by cotton fiber respectively.

Study on the characteristics of actuators modeled from single weave pattern reinforced to the actuator body was conducted. Eight models from different fiber weave conditions were investigated for any resulting motions. Figure 4 shows the weave pattern designs that being varied. The 32-deg (Model 1) and 43-deg (Model 2) fiber angle models are predicted to produce contraction in length, 62-deg (Model 3) and 70-deg (Model 4) fiber angles to produce extension in length, 90-deg (Model 5) anticipated also for extension while 0-deg (Model 6) for contraction. Plain Weave, PW design (Model 7) is fibers attachment of 0° and 90° braided together not known for any motion also considered for simulation. Actuator with no fiber attachment (Model 8) was also simulated to realize the impact of fibers reinforcement to the actuator. The hypotheses are made based on theoretical calculations from Equation (2).

![Figure 2 Bending soft actuator braided by two patterns fiber weaves.](image)

![Figure 3 2-D views of the base actuator model](image)

![Figure 4 2-D views of single pattern fiber weave. Orange lines represent the fibers](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>Fiber pattern at left side</th>
<th>Fiber pattern at right side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70-degree</td>
<td>32-degree</td>
</tr>
<tr>
<td>2</td>
<td>62-degree</td>
<td>32-degree</td>
</tr>
<tr>
<td>3</td>
<td>70-degree</td>
<td>43-degree</td>
</tr>
<tr>
<td>4</td>
<td>62-degree</td>
<td>43-degree</td>
</tr>
<tr>
<td>5</td>
<td>90-degree</td>
<td>32-degree</td>
</tr>
<tr>
<td>6</td>
<td>70-degree</td>
<td>90-degree</td>
</tr>
<tr>
<td>7</td>
<td>0-degree</td>
<td>32-degree</td>
</tr>
<tr>
<td>8</td>
<td>70-degree</td>
<td>0-degree</td>
</tr>
<tr>
<td>9</td>
<td>No Fiber, NF</td>
<td>32-degree</td>
</tr>
<tr>
<td>10</td>
<td>70-degree</td>
<td>No Fiber, NF</td>
</tr>
</tbody>
</table>
Table 2 Properties of Finite Element Method (FEM) analysis

<table>
<thead>
<tr>
<th>Properties</th>
<th>Cylindrical-like Rubber layers</th>
<th>Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element type</td>
<td>Quadratic (4 element nodes)</td>
<td>Line (2 element nodes)</td>
</tr>
<tr>
<td>Geometrical properties</td>
<td>3-D solid</td>
<td>3-D truss</td>
</tr>
<tr>
<td>Material properties</td>
<td>Silicone rubber KE1603 A-B, ShinEtsu Silicons</td>
<td>Nylon Linear-elastic function</td>
</tr>
<tr>
<td>Third order Mooney-rivlin function</td>
<td>(C_{dd} = 0.0863497) (C_{ed} = 0.0621348) (C_{e1} = -0.0128964) (C_{e2} = 0.00342553) (C_{e3} = -0.657745)</td>
<td></td>
</tr>
<tr>
<td>Contact properties</td>
<td>Deformable</td>
<td>Glued to each other</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Static structural analysis with Full Newton-Raphson iterative procedure</td>
<td>Large deformation analysis</td>
</tr>
<tr>
<td>Analysis option</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.0 SIMULATION SETUP

MARC Mentat software is one of the powerful solvers to nonlinear analysis problem. The software is used to carry out simulation problems under static, dynamics or multi-physics loading assumptions. In this study, all models were configured to have same build-in parameter setup. Note that all models differ in fiber weave pattern embedded to its inner rubber layer. Table 2 shows the properties setting of Finite Element Method (FEM) analysis conducted.

Two boundary conditions were applied. The nodes at one end of the actuator were fixed at X, Y and Z directions and pressure of 0.3MPa was applied to the inner surfaces of the actuator’s chamber as illustrates in Figure 5.

Before actuator models of two patterns fiber weave were simulated, actuator models of single pattern fiber weave reinforced to its cylindrical inner rubber layer tube were studied. This is to characterize the properties of each pattern fiber weave whether they exhibits contraction, extension, twisting or other motions.

5.0 RESULTS AND DISCUSSION

Figure 6 presents the displacement at Z-axis of several single pattern fibers weave embedded to the inner layer of the actuator. As predicted from theoretical equation, the fibers angle 32°, 43° and 0° shows positive displacement in simulations, which signify contraction in length, agreed to the theoretical calculation, but 0° model does not contract before 238.5 kPa. 62°, 70° and 90° models show negative displacement expressing extension in length at Z direction, also agreed with theoretical outputs.

Table 3 Single pattern weave actuator models characterization

<table>
<thead>
<tr>
<th>Weave type</th>
<th>Fiber angle [degree]</th>
<th>Contraction ratio from Eq. 2</th>
<th>Characteristic shown from Eq. 2</th>
<th>Characteristic shown from simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braid</td>
<td>32</td>
<td>0.32</td>
<td>contraction</td>
<td>contraction</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>0.21</td>
<td>contraction</td>
<td>contraction</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>-0.23</td>
<td>extension</td>
<td>extension</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>-0.69</td>
<td>extension</td>
<td>extension</td>
</tr>
<tr>
<td>Single</td>
<td>90≈89.9</td>
<td>-330796.33</td>
<td>extension</td>
<td>extension</td>
</tr>
<tr>
<td>Single</td>
<td>0</td>
<td>0.42</td>
<td>contraction</td>
<td>Sudden contraction at 238.5 kPa</td>
</tr>
<tr>
<td>Plain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>No deformation</td>
</tr>
<tr>
<td>No Fiber</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Sudden contraction at 238 kPa</td>
</tr>
</tbody>
</table>
The Plain weave-type does not show any major expansion, extension and contraction in length and mostly remain static even the pressure increases. Therefore, Plain Weave pattern will not be considered for two patterns fiber weave actuator analysis. For No Fiber model (NF), small sudden contraction is observed at 238 kPa but no significant changes in length measured before that. This proved that fiber reinforcement to rubber actuator could improve bending motion. All fiber patterns were considered for two patterns fiber weave analysis except Plain weave (PW) fiber pattern. Easy comparisons are shown in Table 3.

From Figure 7(b) and (c), the model that shows maximum displacement in Y and Z axis is the 32° with 90° fiber angles combination, followed by 32° & 70°, 32° & 62°, 43° & 70°, 43° & 62°, 32° & NF, 32° & 0°, NF & 70°, 90° & 70° and lastly 0° & 70°. The bending motions of the best two models are presented in Figure 9.

Actuators with combined patterns of extension and contraction show bending motion, but a combined pattern of same characteristic from both left and right weave will reduce their bending capability. This can be observed from Model 32° & 0° and 90° & 70° where the displacement of Model 32° & 0° is lesser that 32° with no fibers combination and Model 90° & 70° is lesser than 70° degree with no fibers combination.

In addition, any combinations with 0° pattern do not show good displacement, even single pattern analysis of 0° also shows no contraction before 238.5kPa; referring to Figure 6.

All models present similar curling motion, as shown in Figure 8. Several models that show high bending motion will be considered for further comparison with fabricated model in the future. Figure 9 shows bending displacements of the best two models, Model 32° & 90° and Model 32° & 70°.
6.0 CONCLUSION

A solution to bending actuator is proposed in which several patterns fiber weave designs were introduced. The bending motions generated from actuators were presented through deformation of actuator’s tip in Y and Z-axis directions with increase in pressure. When two patterns of fiber weave are attached together to form a sleeve, significant bending were obtained from most of the models simulated.

Large bending resulted from combined two patterns fiber weave models is achieved when maximum contraction and extension characteristics are exhibited from the model. Combinations of weave patterns of fiber reinforced actuator models that yield the best bending characteristics and its relation to the contraction or extension characteristics have been identified. From the results, 32° weave pattern shows the highest contraction while 90° shows the highest extension, both in Z direction. In this study, good bending deformations are obtained from actuators Model 32° & 90° followed by Model 32° & 70° and Model 32° & 62°.

Acknowledgement

The authors would like to thank Universiti Teknologi Malaysia (UTM) and Ministry of Higher Education (MOHE) Malaysia under ERGS Grant No.Q.J130000.2523.04H90.

References