ESTIMATION OF p-ADIC SIZES OF COMMON ZEROS OF PARTIAL DERIVATIVE POLYNOMIALS ASSOCIATED WITH A QUINTIC FORM

SAPAR S.H1 & MOHD. ATAN K.A2

Abstract. Let $\mathbf{x} = \{x_1, x_2, \ldots, x_n\}$ be a vector in a space \mathbb{Z}^n with \mathbb{Z} ring of integers and let q be a positive integer, f a polynomial in \mathbf{x} with coefficients in \mathbb{Z}. The exponential sum associated with f is defined as $S(f; q) = \sum \exp (2\pi i f(x)/q)$ where the sum is taken over a complete set of residues modulo q. The value of $S(f; q)$ has been shown to depend on the estimate of the cardinality $|V|$, the number of elements contained in the set $V = \{x \mod q \mid f_x \equiv 0 \mod q\}$ where f_x is the partial derivatives of f with respect to x. To determine the cardinality of V, the information on the p-adic sizes of common zeros of the partial derivatives polynomials need to be obtained. This paper discusses a method of determining the p-adic sizes of the components of $\{\xi, \eta\}$ a common root of partial derivative polynomials of $f(x, y)$ in $\mathbb{Z}_p[x, y]$ of degree five based on the p-adic Newton polyhedron technique associated with the polynomial. The quintic polynomial is of the form $f(x, y) = ax^5 + bx^4 y + cx^3 y^2 + dx^2 y^3 + exy^4 + my^5 + nx + ty + k$.

Keywords: Exponential sums, cardinality, p-adic sizes, Newton polyhedron

Abstrak. Katakkan $\mathbf{x} = \{x_1, x_2, \ldots, x_n\}$ vektor dalam ruang \mathbb{Z}^n dengan \mathbb{Z} menandakan gelanggang integer dan q integer positif, f polinomial dalam \mathbf{x} dengan pekali dalam \mathbb{Z}. Hasil tambah eksponen yang disekutukan dengan f ditakrifkan sebagai $S(f; q) = \sum \exp (2\pi i f(x)/q)$ yang dinilai bagi semua nilai x di dalam reja lengkap modulo q. Nilai $S(f; q)$ adalah bersandar kepada penganggaran bilangan unsur $|V|$, yang terdapat dalam set $V = \{x \mod q \mid f_x \equiv 0 \mod q\}$ dengan f_x menandakan polinomial-polinomial terbitan separa f terhadap x. Untuk menentukan kekardinalan bagi V, maklumat mengenai saiz p-adic pensifar sepunya perlu diperolehi. Makalah ini membincangkan suatu kaedah penentuan saiz p-adic pensifar sepunya $f(x, y)$ dalam $\mathbb{Z}_p[x, y]$ berdasarkan lima bersasakan teknik polihedron Newton yang disekutukan dengan polinomial terbitan. Polinomial berdarjah lima yang dipertimbangkan berbentuk $f(x, y) = ax^5 + bx^4 y + cx^3 y^2 + dx^2 y^3 + exy^4 + my^5 + nx + ty + k$.

Kata kunci: Hasil tambah eksponen, kekardinalan, saiz p-adic, polihedron Newton

1 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
 Email: sitihas@fsas.upm.edu.my
2 Laboratory of Theoretical Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
 Email: kamel@inform.upm.edu.my
1.0 INTRODUCTION

In our discussion, we use notation \mathbb{Z}_p, Ω_p, and $\text{ord}_p x$ to denote respectively the ring of p-adic integers, completion of the algebraic closure of \mathbb{Q}_p, the field of rational p-adic numbers and the highest power of p which divides x. For each prime p, let $\mathbf{f} = (f_1, f_2, \ldots, f_n)$ be an n-tuple polynomials in $\mathbb{Z}_p[x]$ where \mathbb{Z}_p is the ring of p-adic integers and $x = \{x_1, x_2, \ldots, x_n\}$.

The estimation of $|V|$ has been the subject of many research in number theory one of which is in finding the best possible estimates to multiple exponential sums of the form $S(f;q) = \sum_{x \text{ mod } q} \exp \left(\frac{2 \pi i f(x)}{q} \right)$ where $f(x)$ is a polynomial in $\mathbb{Z}_p[x]$ and the sum taken over a complete set of residues x modulo a positive integer q.

Loxton and Vaughn [1] are among the researchers who investigated $S(f;q)$ where f is a non-linear polynomial in $\mathbb{Z}_p[x]$ and they found that the estimate of $S(f;q)$ depends on the value of $|V|$ the number of common zeros of the partial derivatives of f with respect to x modulo q. By using this result, the estimate of $S(f;q)$ was found by them in terms of invariants related to f. In his quest to find a more explicit estimate of $S(f;q)$, Mohd Atan [2] began by investigating the sum associated with lower degree polynomials. He considered in particular the non-linear polynomial $f(x,y) = ax^3 + bx^2 y + cx + dy + e$ with coefficients in \mathbb{Z}_p. He found that the p-adic sizes for the zero (ξ, η) of this polynomial is $\text{ord}_p \xi \geq \frac{1}{2}(\alpha - \delta)$ and $\text{ord}_p \eta \geq \frac{1}{2}(\alpha - \delta)$ with $\delta = \max\left\{\text{ord}_p 3a, \frac{3}{2} \text{ord}_p b\right\}$.

Later, Mohd. Atan and Abdullah [3] considered a cubic polynomial of the form $f(x,y) = ax^3 + bx^2 y + cxy^2 + dy^3 + kx + my + n$ and obtained the p-adic sizes for the root (ξ, η) of this polynomial as $\text{ord}_p \xi \geq \frac{1}{2}(\alpha - \delta)$ and $\text{ord}_p \eta \geq \frac{1}{2}(\alpha - \delta)$ with $\delta = \max\left\{\text{ord}_p 3a, \text{ord}_p b, \text{ord}_p c, \text{ord}_p d, \text{ord}_p e\right\}$.

Subsequently, in 1997 Chan and Mohd. Atan [4] investigated a polynomial of a higher degree then the one considered above in $\mathbb{Z}_p[x,y]$ of the form $f(x,y) = ax^4 + bx^3 y + cx^2 y^2 + dxy^3 + ey^4 + mx + ny + k$ and showed that for (ξ, η) a root of $f(x,y)$, $\text{ord}_p \xi \geq \frac{1}{3}(\alpha - \delta)$ and $\text{ord}_p \eta \geq \frac{1}{3}(\alpha - \delta)$ with $\delta = \max\left\{\text{ord}_p a, \text{ord}_p b, \text{ord}_p c, \text{ord}_p d, \text{ord}_p e\right\}$.

Heng and Mohd. Atan [5] determined the cardinality associated with the partial derivatives functions of the cubic form $f(x,y) = ax^3 + bx^2 y + cx + dy + e$. In their
work, they attempt to find a better estimate by looking at the maximum number of common zeros associated with the partial derivatives $f_x(x, y)$ and $f_y(x, y)$. A sharper result was obtained with δ similar to the one considered by Mohd. Atan [2]. However, results for two-variable polynomials of higher degrees are less complete.

In this paper, we will discuss a method of determining explicitly the p-adic sizes of the components (ξ, η) a common root of partial polynomial of $f(x, y)$ in $\mathbb{Z}_p[x, y]$ of degree five. The polynomial that we consider in this paper is of the form

$$f(x, y) = ax^5 + bx^4y + cx^3y^2 + dx^2y^3 + exy^4 + mx^5 + nx + ty + k$$

where the dominant terms are complete.

Our approach entails examination of combinations of indicator diagrams associated with the Newton polyhedrons of f_x and f_y.

2.0 NEWTON POLYHEDRON

In this section, we give a brief description of the polyhedron as developed by [6]. It is a two-variable analogue of the p-adic Newton polygon in single variable as developed by [7].

Definition 2.1:

Let p be a prime and $f(x, y) = \Sigma a_{ij}x^iy^j$ a polynomial in $\mathbb{Z}_p[x, y]$. We map the term $T_{ij} = a_{ij}x^iy^j$ of $f(x, y)$ to the points $P_{ij} = (i, ord_\rho a_{ij})$ in the three dimensional Euclidean space and call this set of points Newton diagram of $f(x, y)$. Below is an example of a Newton diagram for a lower degree polynomial.

Example 2.1:

![Newton Diagram Example](image_url)

Figure 1 Newton diagram of $f(x, y) = 3x^2 + 2xy - y^2 + 27$ with $p = 3$
Definition 2.2:
Let p be a prime and $f(x, y) = \sum a_{ij} x^i y^j$ a polynomial in $\Omega_p[x, y]$. The Newton polyhedron of $f(x, y)$ is the lower convex hull of the Newton diagram of $f(x, y)$. It is the highest convex connected surface which passes through or below the points P_{ij} in the Newton diagram of $f(x, y)$. If $a_{ij} = 0$ then the associated point is omitted, since it lies at infinity above the $i-j$ plane. Below is the Newton polyhedron associated with the polynomial in Example 2.1.

Example 2.2:

![Newton Polyhedron](image)

Figure 2 The Newton polyhedron of $f(x, y) = 3x^2 + 2xy - y^2 + 27$ with $p = 3$

Definition 2.3:
Let $(\mu_i, \lambda_i, 1)$ be the normalized upward-pointing normals to the faces F_i of N_p, the Newton polyhedron of a polynomial $f(x, y)$ in $Q_p[x, y]$. We map $(\mu_i, \lambda_i, 1)$ to the points (μ_i, λ_i) in the $x-y$ plane. If F_r and F_s are adjacent faces in N_p, sharing a common edge, we construct the straight line joining (μ_r, λ_r) and (μ_s, λ_s). If F_r has a common edge with the vertical face F say in N_p, we construct the straight line segment joining (μ_r, λ_r) and the appropriate point at infinity that corresponds to the normal of F, that is the segment along a line with slope $-\alpha/\beta$. We call the set of lines so obtained the indicator diagram associated with the Newton polyhedron of $f(x, y)$ [2]. The indicator diagram associated with the Newton polyhedron in Example 2.2 is as shown in the following example.
Example 2.3:

\[f(x, y) = 3x^2 + 2xy - y^2 + 27 \]

Figure 3 Indicator diagram associated with the polynomial \(f(x, y) = 3x^2 + 2xy - y^2 + 27 \) with \(p = 3 \)

3.0 \(p \)-ADIC ORDERS OF ZEROS OF A POLYNOMIAL

In 1986 Mohd. Atan and Loxton conjectured that to every point of intersection of the combination of the indicator diagrams associated with the Newton polyhedrons of a pair of polynomials in \(\mathbb{Z}_p[x, y] \) there exist common zeros of both polynomials whose \(p \)-adic orders correspond to this point [6]. The conjecture is as follows:

Conjecture

Let \(p \) be a prime. Suppose \(f \) and \(g \) are polynomials in \(\mathbb{Z}_p[x, y] \). Let \((\mu, \lambda)\) be a point of intersection of the indicator diagrams associated with \(f \) and \(g \). Then there are \(\xi \) and \(\eta \) in \(\Omega_p \) satisfying \(f(\xi, \eta) = g(\xi, \eta) = 0 \) and \(\text{ord}_p \xi = \mu \), \(\text{ord}_p \eta = \lambda \).

A special case of this conjecture was proved by Mohd. Atan and Loxton [6]. Sapar and Mohd. Atan [8] improved this result and it is written as follows:

Theorem 3.1

Let \(p \) be a prime. Suppose \(f \) and \(g \) are polynomials in \(\mathbb{Z}_p[x, y] \). Let \((\mu, \lambda)\) be a point of intersection of the indicator diagrams associated with \(f \) and \(g \) at the vertices or simple points of intersections. Then there are \(\xi \) and \(\eta \) in \(\Omega_p \) satisfying \(f(\xi, \eta) = g(\xi, \eta) = 0 \) and \(\text{ord}_p \xi = \mu \), \(\text{ord}_p \eta = \lambda \).

In Theorem 3.2 we give the \(p \)-adic sizes of common zeros of partial derivatives of the polynomial \(f(x, y) = ax^5 + bx^4y + cx^3y^2 + dx^2y^3 + exy^4 + my^5 + nx + ty + k \). First, we have the assertion as in Lemma 3.1. In this lemma and the theorem that follows,
\[\alpha_1 = \frac{4b + 2\lambda_2 c}{4(5a + \lambda_2 b)}, \alpha_2 = \frac{4b + 2\lambda_1 c}{4(5a + \lambda_1 b)}, \text{with } \lambda_1, \lambda_2 \text{ zeros of } \]

\[k(\lambda) = (10dm - 4e^2)\lambda^2 + (10cm - 2de)\lambda + 2ce - d^2. \]

We note that clearly \(\alpha_1 \neq \alpha_2 \) if \(\lambda_1 \neq \lambda_2 \).

Lemma 3.1

Suppose \(U, V \) in \(\Omega_p \) with \(U = x + \alpha_1 y \) and \(V = x + \alpha_2 y \). Let \(p > 5 \) be a prime, \(a, b, c, d, e \) and \(m \) in \(Z_p \), \(\delta = \max\{\text{ord}_p a, \text{ord}_p b, \text{ord}_p c, \text{ord}_p d, \text{ord}_p e, \text{ord}_p m\} \), \(\text{ord}_p a, \text{ord}_p b \geq \alpha > \delta \) and \(\text{ord}_p b^2 > \text{ord}_p ac \). If \(\text{ord}_p U = \frac{1}{4} \text{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} \), \(\text{ord}_p V = \frac{1}{4} \text{ord}_p \frac{s + \lambda_2 t}{5a + \lambda_2 b} \) and \(\text{ord}_p (10cm - 2de)^2 > \text{ord}_p (10dm - 4e^2)(2ce - d^2) \) then \(\text{ord}_p x \geq \frac{1}{4}(\alpha - \delta) \) and \(\text{ord}_p y \geq \frac{1}{4}(\alpha - \delta) \).

Proof:

From \(U = x + \alpha_1 y \) and \(V = x + \alpha_2 y \), we have

\[x = \frac{\alpha_1 U - \alpha_1 V}{\alpha_2 - \alpha_1} \text{ and } y = \frac{U - V}{\alpha_1 - \alpha_2} \]

Then,

\[\text{ord}_p x = \text{ord}_p (\alpha_1 V - \alpha_2 U) - \text{ord}_p (\alpha_1 - \alpha_2) \quad (1) \]

and

\[\text{ord}_p y = \text{ord}_p (U - V) - \text{ord}_p (\alpha_1 - \alpha_2) \quad (2) \]

with \(\text{ord}_p (\alpha_1 - \alpha_2) = \text{ord}_p \left(\frac{2b^2 - 5ac}{2(5a + \lambda_1 b)(5a + \lambda_2 b)} (\lambda_2 - \lambda_1) \right) \)

and \(\lambda_2 - \lambda_1 = -\sqrt{(10cm - 2de)^2 - 4(10dm - 4e^2)(2ce - d^2)} \)

\[10dm - 4e^2 \]

Since \(\text{ord}_p (10cm - 2de)^2 > \text{ord}_p (10dm - 4e^2)(2ce - d^2) \), we have \(\lambda_1 \neq \lambda_2 \) and

\[\text{ord}_p (\lambda_1 - \lambda_2) = \frac{1}{2} \text{ord}_p \left(\frac{2ce - d^2}{10dm - 4e^2} \right) \]
Hence, from (1) and (3),
\[
\operatorname{ord}_p x = \operatorname{ord}_p (\alpha_2 U - \alpha_1 V) - \operatorname{ord}_p \left(\frac{(2b^2 - 5ac)(\lambda_2 - \lambda_1)}{2(5a + \lambda_2 b)(5a + \lambda_2 b)} \right)
\]

Suppose \(\min \{ \operatorname{ord}_p \alpha_2 U, \operatorname{ord}_p \alpha_1 V \} = \operatorname{ord}_p \alpha_2 U \), we have
\[
\operatorname{ord}_p x \geq \operatorname{ord}_p U + \operatorname{ord}_p \frac{4b + 2\lambda_2 c}{4(5a + \lambda_2 b)} - \operatorname{ord}_p \left(\frac{(2b^2 - 5ac)(\lambda_2 - \lambda_1)}{2(5a + \lambda_2 b)(5a + \lambda_2 b)} \right)
\]

Thus, we obtain
\[
\operatorname{ord}_p x \geq \operatorname{ord}_p U + \operatorname{ord}_p (2b + \lambda_2 c) - \operatorname{ord}_p (2b^2 - 5ac) - \operatorname{ord}_p (\lambda_1 - \lambda_2) + \operatorname{ord}_p (5a + \lambda_1 b)
\]
That is,
\[
\operatorname{ord}_p x \geq \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} + \operatorname{ord}_p (2b + \lambda_2 c) - \operatorname{ord}_p (2b^2 - 5ac) - \frac{1}{2} \operatorname{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \operatorname{ord}_p (5a + \lambda_1 b)
\]

since \(\operatorname{ord}_p U = \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} \)

Suppose \(\min \{ \operatorname{ord}_p 2b, \operatorname{ord}_p \lambda_2 c \} = \operatorname{ord}_p \lambda_2 c \). Since \(\operatorname{ord}_p b^2 > \operatorname{ord}_p ac \), we have
\[
\operatorname{ord}_p x \geq \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} + \operatorname{ord}_p b - \operatorname{ord}_p ac - \frac{1}{2} \operatorname{ord}_p \frac{2ce - d^2}{10dm + 4e^2} + \operatorname{ord}_p (5a + \lambda_1 b)
\]

Suppose \(\min \{ \operatorname{ord}_p 5a, \operatorname{ord}_p \lambda_1 b \} = \operatorname{ord}_p \lambda_1 b \) and since \(\operatorname{ord}_p b^2 > \operatorname{ord}_p ac \), we have
\[
\operatorname{ord}_p x \geq \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} + \operatorname{ord}_p b - \operatorname{ord}_p b^2 - \frac{1}{2} \operatorname{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \operatorname{ord}_p \lambda_1 b
\]

Since \(\operatorname{ord}_p (10cm - 2de)^2 > \operatorname{ord}_p (10dm - 4e^2)(2ce - d^2) \), we find that
\[
\operatorname{ord}_p x \geq \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b} - \frac{1}{2} \operatorname{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \frac{1}{2} \operatorname{ord}_p \frac{2ce - d^2}{10dm - 4e^2} = \frac{1}{4} \operatorname{ord}_p \frac{s + \lambda_1 t}{5a + \lambda_1 b}
\]
Suppose \(\min\{\text{ord}_p s, \text{ord}_p \lambda t\} = \text{ord}_p s \) and \(\min\{\text{ord}_p 5a, \text{ord}_p \lambda_1 b\} = \text{ord}_p \lambda_1 b \). Then,

\[
\text{ord}_p x \geq \frac{1}{4} \left(\text{ord}_p s - \text{ord}_p \lambda t \right) \\
\geq \frac{1}{4} \left(\text{ord}_p s - \text{ord}_p a \right)
\]

By hypothesis,

\[
\text{ord}_p x \geq \frac{1}{4} (\alpha - \delta)
\]

Now from (2) and (3), we have

\[
\text{ord}_p y = \text{ord}_p (U - V) - \text{ord}_p \left(\frac{(2b^2 - 5ac)(\lambda_2 - \lambda_1)}{2(5a + \lambda_1 b)(5a + \lambda_2 b)} \right)
\]

Suppose \(\min\{\text{ord}_p U, \text{ord}_p V\} = \text{ord}_p U \) and since \(\text{ord}_p (5a + \lambda_1 b) = \text{ord}_p (5a + \lambda_2 b) \), we obtain

\[
\text{ord}_p y > \text{ord}_p U - \text{ord}_p \left(2b^2 - 5ac \right) - \text{ord}_p (\lambda_2 - \lambda_1) + 2\text{ord}_p (5a + \lambda_1 b)
\]

That is,

\[
\text{ord}_p y \geq \frac{1}{4} \left(\text{ord}_p s + \lambda t \right) - \text{ord}_p ac - \frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + 2\text{ord}_p (5a + \lambda_1 b) \\
= \frac{1}{4} \text{ord}_p (s + \lambda t) - \text{ord}_p ac - \frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \frac{7}{4} \text{ord}_p (5a + \lambda_1 b)
\]

Suppose \(\min\{\text{ord}_p 5a, \text{ord}_p \lambda_1 b\} = \text{ord}_p \lambda_1 b \). Since \(\text{ord}_p b^2 > \text{ord}_p ac \), we have

\[
\text{ord}_p y \geq \frac{1}{4} \text{ord}_p (s + \lambda t) - \text{ord}_p b^2 - \frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \frac{7}{4} \text{ord}_p b \\
+ \frac{7}{4} \left(\frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} \right) \\
\geq \frac{1}{4} \text{ord}_p (s + \lambda t) - \frac{1}{4} \text{ord}_p b - \frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} + \frac{1}{2} \text{ord}_p \frac{2ce - d^2}{10dm - 4e^2} \\
\geq \frac{1}{4} \text{ord}_p (s + \lambda t) - \text{ord}_p b
\]
ESTIMATING p-ADIC SIZES OF COMMON ZEROS OF PARTIAL DERIVATIVE

By hypothesis,
\[\text{ord}_p y \geq \frac{1}{4} (\alpha - \delta) \]

We will get the same result if
\[
\min\{\text{ord}_p U, \text{ord}_p V\} = \text{ord}_p V, \quad \min\{\text{ord}_p 2b, \text{ord}_p \lambda_2 c\} = \text{ord}_p \lambda_2 c,
\]
\[
\min\{\text{ord}_p 5a, \text{ord}_p \lambda_1 b\} = \text{ord}_p a \quad \text{and} \quad \min\{\text{ord}_p s, \text{ord}_p \lambda_1 t\} = \text{ord}_p \lambda_1 t
\]

Therefore, we have
\[
\text{ord}_p x \geq \frac{1}{4} (\alpha - \delta) \quad \text{dan} \quad \text{ord}_p y \geq \frac{1}{4} (\alpha - \delta)
\]
as asserted.

Theorem 3.2

Let $f(x,y) = ax^5 + bx^4y + cx^3y^2 + dx^2y^3 + exy^4 + my^5 + nx + ty + k$ be a polynomial in $\mathbb{Z}_p[x,y]$ with $p > 5$. Suppose $\alpha > 0$, $\delta = \max\{\text{ord}_p a, \text{ord}_p b, \text{ord}_p c, \text{ord}_p d, \text{ord}_p e, \text{ord}_p m\}$, $\text{ord}_p b^2 > \text{ord}_p ac$ and $\text{ord}_p (10c - 2de) > \text{ord}_p (10dm - 4e^2)(2ce - d^2)$.

If $\text{ord}_p f_x (0,0), \text{ord}_p f_y (0,0) \geq \alpha > \delta$ there exists (ξ, η) in Ω_p^2 such that $f_x(\xi, \eta) = 0$, $f_y(\xi, \eta) = 0$ and $\text{ord}_p \xi \geq \frac{1}{4} (\alpha - \delta), \text{ord}_p \eta \geq \frac{1}{4} (\alpha - \delta)$.

Proof:

Let $g = f_x$ and $h = f_y$, and λ a constant.

Then,
\[
(g + \lambda h)(x,y) = \left(5a + \lambda b\right)x^4 + \left(4b + 2\lambda c\right)x^3 y + \left(3c + 3\lambda d\right)x^2 y^2 + \left(2d + 4\lambda e\right)xy^3 + \left(e + 5\lambda m\right)y^4 + \lambda \lambda t
\]

and
\[
\frac{(g + \lambda h)(x,y)}{5a + \lambda b} = x^4 + \left(\frac{4b + 2\lambda c}{5a + \lambda b}\right)x^3 y + \left(\frac{3c + 3\lambda d}{5a + \lambda b}\right)x^2 y^2 + \left(\frac{2d + 4\lambda e}{5a + \lambda b}\right)xy^3 + \left(\frac{e + 5\lambda m}{5a + \lambda b}\right)y^4 + \frac{s + \lambda t}{5a + \lambda b}
\]

(4)

Let α_{ij} denote the coefficients of x^iy^j in the completed quartic form of Equation (4), $0 \leq i \leq 4$, $0 \leq j \leq 4$. By completing the quartic Equation (4) and by solving simultaneously equations $\alpha_{ij}(\lambda) = 0$, $i \neq 0$, $j \neq 0$, and $i + j = 4$, we obtain
where \(\lambda \) satisfies the equation
\[
\frac{e + 5\lambda m}{5a + \lambda b} - \frac{1}{2 \frac{(d + 2\lambda e)^2}{(c + \lambda d)(5a + \lambda b)}} = 0
\]
That is,
\[
(10dm - 4e^2)\lambda^2 + (10cm - 2de)\lambda + 2ce - d^2 = 0
\]
(6)
From (6), we have two values of \(\lambda \), say \(\lambda_1, \lambda_2 \) where
\[
\lambda_1 = \frac{-\left(10cm - 4e^2\right) + \sqrt{(10cm - 2de)^2 - 4\left(10dm - 4e^2\right)(2ce - d^2)}}{2\left(10dm - 4e^2\right)}
\]
and
\[
\lambda_2 = \frac{-\left(10cm - 4e^2\right) - \sqrt{(10cm - 2de)^2 - 4\left(10dm - 4e^2\right)(2ce - d^2)}}{2\left(10dm - 4e^2\right)}
\]
\(\lambda_1 \neq \lambda_2 \), because \(ord_p(10cm - 2de)^2 > ord_p (10dm - 4e^2)(2ce - d^2) \).
Now, let
\[
U = x + \frac{4b + 2\lambda c}{4(5a + \lambda b)}y
\]
(7)
\[
V = x + \frac{4b + 2\lambda c}{4(5a + \lambda b)}y
\]
(8)
\[
F(U,V) = (g + \lambda_1 h)(x,y)
\]
(9)
and
\[
G(U,V) = (g + \lambda_2 h)(x,y)
\]
(10)
By substituting \(U \) and \(V \) in (5), we obtain a polynomial in \((U,V) \) as follows:
\[
F(U,V) = (5a + \lambda_1 b)U^4 + s + \lambda_1 t
\]
(11)
\[
G(U,V) = (5a + \lambda_2 b)V^4 + s + \lambda_2 t
\]
(12)
The combination of the indicator diagrams associated with Newton polyhedron of (11) and (12) is as shown below.
ESTIMATION OF p-ADIC SIZES OF COMMON ZEROS OF PARTIAL DERIVATIVE

From Figure 4 and Theorem 3.1 there exists (\hat{U}, \hat{V}) in Ω^2_p such that $F(U, V) = (5a + \lambda_1 b)U^4 + s + \lambda_1 t$ and $G(U, V) = (5a + \lambda_2 b)U^4 + s + \lambda_2 t$.

From Figure 4 and Theorem 3.1 there exists (\hat{U}, \hat{V}) in Ω^2_p such that $F(U, V) = 0$, $G(U, V) = 0$ and $ord_p U = \mu_1$, $ord_p V = \mu_2$ with $\mu_1 = \frac{1}{4} ord_p \frac{s + \lambda_1 t}{5a + \lambda_1 b}$ and $\mu_2 = \frac{1}{4} ord_p \frac{s + \lambda_2 t}{5a + \lambda_2 b}$. Let $U = \hat{U}$ and $V = \hat{V}$ in (7) and (8). There exists (x_0, y_0) in Ω^2_p such that

$$x_0 = \frac{\alpha_2 \hat{U} - \alpha_1 \hat{V}}{\alpha_2 - \alpha_1} \text{ and } y_0 = \frac{\hat{U} - \hat{V}}{\alpha_1 - \alpha_2}.$$

Hence, $ord_p x_0 = ord_p (\alpha_2 \hat{V} - \alpha_1 \hat{U}) - ord_p (\alpha_1 - \alpha_2)$ and $ord_p y_0 = ord_p (V - U) - ord_p (\alpha_1 - \alpha_2)$.

From Lemma 3.1, we find that $ord_p x_0 \geq \frac{1}{4}(\alpha - \delta)$ and $ord_p y_0 \geq \frac{1}{4}(\alpha - \delta)$. Let $\xi = x_0$ and $h = y_0$. By back substitution in (9) and (10) and since $\lambda_1 \neq \lambda_2$ we have $g(\xi, \eta) = f_x(\xi, \eta) = 0$ and $h(\xi, \eta) = f_y(\xi, \eta) = 0$. Thus, $ord_p \xi = ord_p x_0 \geq \frac{1}{4}(\alpha - \delta)$ and $ord_p \eta = ord_p y_0 \geq \frac{1}{4}(\alpha - \delta)$ with (ξ, η) a common zero of g and h.

4.0 CONCLUSION

Our investigation observes that if p is an odd prime, $p > 5$, $f(x, y) = ax^5 + bx^4 y + cx^3 y^3 + dx^2 y^3 + ey^4 + my^5 + nx + ty + k$ a polynomial in $Z_p[x, y]$ with $ord_p b^2 > ord_p ac$ and $ord_p (10cm - 2de)^2 > ord_p (10dm - 4e^2)(2ce - d^2)$, then the p-adic sizes of common zeros of partial derivatives of this polynomial is
\[\text{ord}_p \xi \geq \frac{1}{4} (\alpha - \delta) \text{and } \text{ord}_p \eta \geq \frac{1}{4} (\alpha - \delta) \]

with \(\xi = \max\{\text{ord}_p a, \text{ord}_p b, \text{ord}_p c, \text{ord}_p d, \text{ord}_p e, \text{ord}_p m\} \) and \(\text{ord}_p f(x,0), \text{ord}_p f(0,0) \geq \alpha > \xi. \)

This work demonstrates that common zeros of certain \(p \)-adic orders of partial derivatives of a two-variable polynomial with coefficients in \(\mathbb{Z}_p \) can be obtained through applications of the Newton polyhedron technique. We have also shown that the \(p \)-adic orders of the zeros can be determined explicitly in terms of the \(p \)-adic orders of the coefficients of the dominant terms of the two-variable polynomial. This work extends future direction in finding explicit estimates of exponential sums associated with much higher degree of two-variable polynomials, which will in turn pave the way to finding better estimates of the sum associated with polynomials in several variables.

REFERENCES