NEW CUBIC TIMMER TRIANGULAR PATCHES WITH C^1 AND G^1 CONTINUITY

aFundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
bCentre for Smart Grid Energy Research (CSMER), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
cSchool of Computer Science and Engineering, University of West Bohemia, Plzen
dSchool of Quantitative Sciences, UUMCAS, Universiti Utara Malaysia, Kedah, Malaysia
eCentre for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
fCentre for Modelling & Data Science, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

*Corresponding author
samsul_ariffin@utp.edu.my

Graphical abstract

Abstract

In this study, a new cubic Timmer triangular patch is constructed by extending the univariate cubic Timmer basis functions. The best scheme that lies towards the control polygon is cubic Timmer curve and surface compared to the other methods. From the best of our knowledge, nobody has extended the univariate cubic Timmer basis to the bivariate triangular patch. The construction of the proposed cubic Timmer triangular patch is based on the main idea of the cubic Ball and cubic Bezier triangular patches construction. Some properties of the new cubic Timmer triangular patch are investigated. Furthermore, the composite cubic Timmer triangular patches with parametric continuity (C^1) and geometric continuity (G^1) are discussed. Simple error analysis between the triangular patches and one test function is provided for each continuity type. Numerical and graphical results are presented by using Mathematica and MATLAB. Results show that cubic Timmer triangular patches produces estimated result with less RMSE compared to Bezier patches relatively by 2.01% to 7.80%. These results are significant in producing high accuracy for image and surface reconstruction.

Keywords: Cubic Timmer triangular patch, parametric continuity, geometric continuity, cubic Timmer curve, scattered
1.0 INTRODUCTION

In 1974, R. Barnhill and R. Riesenfeld coined the term of Computer Aided Geometric Design (CAGD) at one of the conferences in the University of Utah, U.S.A. [13]. CAGD was developed to bring some of the computers’ benefits to industries. Basically, the creation of surfaces and curves can be described as a mathematical representation with some geometric properties. A familiar way of modelling some geometry shape is to represent the curve or surface of an object as a patchwork of parametric polynomial pieces. This polynomial pieces can be represented as Bézier curves and surfaces with degree n, which it is convenient for the user for making interactive designs. One of the famous methods of constructing curves and surfaces is using cubic Bézier followed by cubic Ball. In 1980, the cubic Timmer curve was introduced by Harry Timmer. Cubic Timmer curve has one special advantage which is even though it does not all fulfill the convex hull property, the cubic Timmer curve will lie closer to the control polygon compared to cubic Bézier and cubic Ball, and sometimes, the curve can be used to mimic the control polygons.

Some surfaces are more suitable with triangles than quadrilaterals surfaces because of the partition of the domain will be more convenient with triangular regions. Therefore, Timmer triangular patches are used to construct surfaces over arbitrary triangular meshes. A brief overview of the curve and surface construction by using quadrilaterals and triangles surfaces given in the Section 2.0.

Scattered data interpolation can be used to reconstruct the surface obtained from an experiment, for example, in the case of geological events such as rainfall distributions and geochemical compositions of a certain physical state. One of the earliest studies that addressed this problem is the paper by Shepard [20] who implemented a global scheme for scattered data. Another method is called a triangulation based scheme, i.e. the surface is reconstructed through a convex combination of Bézier triangular patches, which satisfies some degree of continuity along adjacent triangles. Research on scattered data interpolation can be found in [1-25].

Most of the previous researchers have used a cubic Bézier and a cubic Ball equation to construct curves and surfaces for both rectangular and triangular patches. Besides, the cubic basis functions constructed by Timmer [22] are only for curve and rectangular patches. At the moment, nobody has extended the Timmer methodology on rectangular patches to the cubic Timmer triangular patches. Thus in this study, the extension of the univariate cubic Timmer to the bivariate triangular basis is discussed. Hence, the construction of this new Timmer triangular patches will be compared and analyzed with the previous scheme.

Said [19] constructed the basis function called the cubic Bézier-like with two positive parameters that are denoted as α and β. By choosing the appropriate values for α and β, the basis functions can be reduced to cubic Bézier and Ball basis functions. Ali [1] introduced another cubic Bézier-like basis function through a Hermite curve.

Goodman and Said [122] constructed a suitable C^1 triangular interpolant for scattered data interpolation using the convex combination scheme. The data given determine the suitable Bezier ordinates so the adjacent patches meet with the C^1 continuity requirement. Their works is different from Foley and Opitz [11], even though both developed a C^1 cubic triangular convex combination scheme. Foley and Opitz [11] proposed cubic precision boundary derivatives to construct scattered data interpolation. Chang and Said [6] further extended this approach to
C² quintic triangular surface scheme that requires up to the second-order partial derivatives values. Brodlie et al. [5] have discussed the positivity preserving by using meshfree methods that involving some optimization problem.

Said and Wirza [20] adopted the interpolant scheme proposed by Goodman and Said [11] to construct scattered data interpolation by using cubic Ball triangular patches since the cubic precision method was a bit difficult to them. The data that they are used enable them to determine appropriate Ball triangular points such that adjacent triangular patches fulfill the C¹ continuity.

Zhu et al. [25] discussed a new quartic rational Said-Ball-like basis function and applied it to generate a class of C¹ continuous quartic rational Hermite Interpolations splines with local tension shape parameters. Then, they extend the basis function to a triangular domain. Saaban et al. [18] have constructed C² interpolant to preserve the positivity of rainfall data in Peninsular Malaysia. The quartic Bézier triangular patches is used to construct the surface.

Chan and Ong [6] described the local scheme for range-restricted scattered data interpolation by using cubic triangular Bézier patches. The interpolating surface was obtained piecewise through a convex combination of three cubic Bézier triangular patches. Luo and Peng [14] described the C¹ rational spline as a piecewise rational convex combination of three cubic Bézier triangular patches that sharing the same boundary Bézier ordinates. The sufficient conditions for non-negativity were derived on the boundary Bézier ordinates of the adjacent triangle and the normal derivatives at the data sites.

Karim and Saaban [12] visualized the terrain data of central region of Malaysia by using cubic Ball triangular patches. Ramli and Ali [16] extended the Timmer method to higher order Timmer blending functions which are quartic and quintic Timmer methods. They designed of a few objects i.e. glass, sink and vase using their proposed methods. Awang et al. [3] reconstructed the surface of scattered data points by using six different of test functions. Their tested the effectiveness of Delaunay triangulation when the points are removed. Awang and Rahmat [3] developed a smooth surface using cubic Bézier triangular patch with the Graphical User Interface (GUI) function to represent the results and the comparison of all the surface that generated using six different test functions.

2.0 METHODOLOGY

2.1 Bézier-Like Cubic Basis Functions

The Bézier-like basis functions have two free parameters to change the shape of the curve. As compared to cubic Bézier, the way to change the shape of the curve is by adjusting the control points. By these basis functions are more convenient because the shape can be by altering the value of the free parameters. The cubic Bézier-like basis functions containing two parameters α and β for u ∈ [0,1] are defined as follows [13]:

\[
\begin{align*}
B^0_0(u) &= (1 - u)^2(1 + (2 - a)u) \\
B^1_0(u) &= a(1 - u)^3 \\
B^2_0(u) &= 0.5Bu^2(1 - u) \\
B^3_0(u) &= u^2(1 + (2 - \beta)(1 - u))
\end{align*}
\]

The Bézier and Ball basis functions will be obtained when α = β = 3 and α = β = 2 respectively. If the parameters α = β = 4 then the basis functions above known as Timmer basis functions.

The parametric cubic Bézier-like curve is defined as

\[
P(u) = \sum_{i=0}^{3} p_i B^i(u), \quad u \in [0,1]
\]

where \(p_i, i = 0,1,2,3 \) are the control points while \(B^i(u), i = 0,1,2,3 \) are the basis functions. Figure 1 shows three different curves obtained from three different free parameters.

Based on Figure 1, the curve for parameter α = β = 4 which known as cubic Timmer curve lies towards the control polygon better than others. The concept of cubic Timmer method is proposed by Harry Timmer (1980) to produce curve and surface [22]. The cubic Timmer basis functions are defined as follows.

\[
\begin{align*}
T^0_0(u) &= (1 - 2u)(1 - u)^2 \\
T^1_0(u) &= 4u(1 - u)^2 \\
T^2_0(u) &= 4u^2(1 - u) \\
T^3_0(u) &= (2u - 1)u^2
\end{align*}
\]

The cubic Timmer curve is as follows:

\[
T_3(u) = \sum_{i=0}^{3} a_i T^i(u)
\]

where \(a_i \) denotes as the control point, while \(T^i(u), i = 0,1,2,3 \) are the cubic Timmer basis functions [19]. In Figure 2, 3 and 4 show that the bi-cubic Timmer surface and the equation consist of control points denoted as \(a_i \) and the basis functions \(T^i(u), T^j(v), i = 0,1,2,3 \) can be represented by:
$$T(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{i}T_{i}^{3}(u) T_{j}^{3}(v) \quad (5)$$

Based on Figure 2 until 4, bi-cubic Timmer surface lies towards the control polygon better than bi-cubic Bézier and Ball surface. Some applications of Timmer curve can be furthered explored. Figures 5 and 6 show the letter “f” and letter “t” which consists 25 and 20 cubic segments, respectively.
2.2 Cubic Triangular Basis Functions

Geometric surfaces usually can be better tiled and constructed with triangles meshes than quadrilaterals meshes because triangular regions can be more natural in partition of the domain [8]. Therefore, arbitrarily shaped surfaces can be constructed. Given three vertices V_1, V_2, V_3 correspond to the barycentric coordinates $(1,0,0), (0,1,0)$ and $(0,0,1)$ respectively. The barycentric coordinates are denote as u, v and w such that any point of the triangle can be written as [6]

$$V = uV_1 + vV_2 + wV_3, \quad u + v + w = 1$$ \hspace{1cm} (6)

A degree n triangular Bézier patch denoted over a triangular domain is defined as [8].

$$P(u, v, w) = \sum_{i+j+k=n} b_{ijk} B_{ijk}^n(u, v, w)$$ \hspace{1cm} (7)

where b_{ijk} is the control point of the cubic Bézier triangular patch that constructed by using de Casteljau algorithm. Meanwhile $B_{ijk}^n(u, v, w)$ is Bernstein polynomials defined by:

$$B_{ijk}^n(u) = \frac{n!u^iw^kw^k}{i!j!k!}, \quad i + j + k = n, \quad i, j, k \geq 0$$ \hspace{1cm} (8)

This equation is called bivariate because one variable is dependent to the other two variables, i.e. $w = 1 - u - v$. The de Casteljau algorithm for a triangular patches is analogous to the algorithm for curves, i.e. repeated linear interpolation [6]. In the cubic form, the control net consists of a few vertices shown in Figure 6:

The sum of all subscripts in each of the vertices is 3 since it is a cubic case. The control net consists of $\frac{1}{2}(n+1)(n+2)$ vertices. The de Casteljau algorithm can be represented by:

Given: A triangular array of points $b_{ijk} \in \mathbb{R}^2; i + j + k = n$ and a point in \mathbb{R}^2 with barycentric coordinate u.

Set:

$$b_i^r(u) = ub_i^{r-1}(u) + vb_{i+1}^{r-1}(u) + wb_{i+2}^{r-1}(u)$$ \hspace{1cm} (9)

where $r = 1, ..., n$ and $i + j + k = n - r$ [7].

Based on the de Casteljau algorithm, the properties of Bézier triangles are as follows:

a) Affine invariance: Since linear interpolation is an affine map, the de Casteljau algorithm uses the linear interpolation only.

b) Invariance under affine parameter transformations: A point u in the de Casteljau algorithm will have the same barycentric coordinates u after an affine transformation.

c) Convex hull: This property is satisfied since for $0 \leq u, v, w \leq 1$, each of the $b_i^r(u)$ is a convex combination of the previous b_{ijk}^r.

2.3 New Cubic Timmer Triangular Patches

The bi-cubic Timmer surface or bivariate cubic Timmer is actually an extension from cubic Timmer curve. It is designed by using tensor product of two or more curves. As mentioned in previous section, the previous method such as cubic Bézier and Ball triangular patches are formed by using the de Casteljau algorithm. In this study, a new cubic Timmer triangular patch is constructed based on the concept of the previous methods. As a further explanation, Figure 7 shows the control points of cubic Timmer triangular patch and Figure 8 shows the cubic Timmer triangular basis functions.
Based on Goodman and Said [8], the value of each control point for Bézier and Ball triangular patch is based on the equation of cubic Bézier and Ball curve. However, for $T_{111}^3(u, v, w)$ which lies in the triangular, is determined by using the property of Bézier triangular patches which is a partition of unity or mathematically can be denoted as $\sum_{i=0}^{3} B_{ijk}^3(u, v, w) = 1$. As compared to cubic Timmer triangular patch, the value of $T_{111}^3(u, v, w)$ can be obtained by using the same concept as cubic Bézier triangular patches i.e. by using partition of unity described below:

$$\sum_{i=0}^{3} T_{ijk}^3(u, v, w) = 1$$

$$1 = u^2(2u - 1) + 4u^2v + 4u^2w + v^2(2v - 1) + 4v^2u + 4v^2w + w^2(2w - 1) + 4w^2u + 4w^2v + T_{111,1}^3(u, v, w)$$

$$T_{111}^3(u, v, w) = 1 - u^2(2u - 1) + 4u^2v + 4u^2w + v^2(2v - 1) + 4v^2u + 4v^2w + w^2(2w - 1) + 4w^2u + 4w^2v$$

When substituting the barycentric coordinates $u + v + w = 1$, the value of $T_{111,1}^3(u, v, w)$ will be the same as $B_{111}^3(u, v, w)$ in the cubic Bézier triangular patch, which fulfilled the partition of unity property.

$$T_{111}^3(u, v, w) = (u + v + w)^3 - u^2(2u - u - v - w) + 4u^2v + 4u^2w + v^2(2v - u - v - w) + 4v^2u + 4v^2w + w^2(2w - u - v - w) + 4w^2u + 4w^2v$$

Figure 9 shows the complete cubic Timmer basis functions. The following theorem is stated the definition of the new cubic Timmer triangular patch:

Theorem 1: A cubic Timmer triangular patch is defined by,

$$T(u, v, w) = \sum_{i+j+k=m} a_{i,j,k} T_{ijk}^3$$

$$T(u, v, w) = u^2(2u - 1)a_{0,0,0} + 4u^2va_{2,1,0} + 4u^2wa_{2,0,1} + v^2(2v - 1)a_{0,3,0} + 4v^2ua_{1,2,0} + 4v^2wa_{0,2,1} + w^2(2w - 1)a_{0,0,3} + 4w^2ua_{1,0,2} + 4w^2va_{0,1,2} + 6uvw a_{1,1,1}$$

where $a_{n,0,0}$ denoted as the Timmer ordinates of patch T. The derivative of T with respect to the direction $z = (x_1, x_2, x_3) = x_1V_1 + x_2V_2 + x_3V_3, x_1 + x_2 + x_3 = 0$ is given by

$$\frac{\partial T}{\partial z} = \frac{\partial T}{\partial u} z_1 + \frac{\partial T}{\partial v} z_2 + \frac{\partial T}{\partial w} z_3$$

From (7), it can be shown that

$$\frac{\partial T}{\partial u} = 4uv^2b_{100} + 4w^2b_{102} + 6uvw b_{111}$$

$$\frac{\partial T}{\partial v} = (6v^2 - 2v)b_{030} + 8wb_{02,1} + 4w^2b_{01,2}$$

$$\frac{\partial T}{\partial w} = (6w^2 - 2w)b_{003} + 4v^2b_{02,1} + 8wb_{01,2}$$

Figure 10 shows some plots of cubic Timmer triangular basis functions.
Theorem 2: These new Timmer triangular patches have the following properties.

(a) Partition of unity: The property means the sum of the Timmer triangular basis function is 1 or in mathematically can define as below
\[\sum_{i=0}^{3} T_{ijk}^3(u, v, w) = 1 \]

(b) Symmetry: The surfaces that formed from two different ordering of its control points will remain the same look.

(c) Positivity: Each of the cubic Timmer triangular basis functions is fulfilled the positivity or nonnegativity behavior \(T_{ijk}^3(u, v, w) \geq 0 \), except for certain condition. \(T_{300}^3(u, v, w) \leq 0 \) when \(\frac{1}{2} \leq u \leq 1 \) and both of \(T_{201}^3(u, v, w) \leq 0 \) and \(T_{210}^3(u, v, w) \leq 0 \) when \(0 \leq u \leq \frac{1}{2} \).

According to the Timmer triangular basis functions stated above, it will not fulfilled the nonnegativity behavior on some interval.

(d) Convex hull: The Timmer triangular patches do not all lie within the convex hull of the control polygon. If the positivity property is fulfilled for the Timmer triangular patches so it will ensure the convex hull property.

Figure 11(a) shows the control polygon of the cubic Timmer triangular patch, Figure 11(b) shows the cubic Timmer triangular patch and Figure 11(c) shows the cubic Timmer triangular patch together with its control polygon.

2.4 \(C^1 \) and \(G^1 \) Continuity between Adjacent Cubic Timmer Triangular Patches

Let \(\Delta U_1U_2U_3 \), \(\Delta V_1V_2V_3 \) be two adjacent triangles on the \(xy \) plane with \(U_2 = V_2 \) and \(U_3 = V_3 \) in triangle M and N (Figure 12). In this cubic Timmer triangular patches contain Timmer coordinates \(b_{i,j,k} \) and \(c_{i,j,k} \). These two cubic Timmer triangles have the same boundary curve along the common boundary \(U_2 = U_3 \), thus \(b_{0,0,3} = c_{0,0,3} \), \(b_{0,2,1} = c_{0,1,2} \), \(b_{0,1,2} = c_{0,2,1} \) and \(b_{0,0,3} = \ldots \)
The necessary and sufficient conditions for C^1 continuity between the two triangles are
\begin{align*}
 c_{0,0,2} &= ab_{1,1,2} + \beta b_{0,0,3} + \gamma y_{0,2,1} + \delta z_{1,1,2} + \zeta w_{1,2,1} \\
 c_{1,1,1} &= \alpha b_{0,0,3} + \beta b_{0,0,3} + \gamma y_{0,0,2} + \delta z_{1,0,2} + \zeta w_{1,1,2} \\
 c_{1,1,1} &= \alpha b_{0,0,3} + \beta b_{0,0,3} + \gamma y_{0,0,2} + \delta z_{1,0,2} + \zeta w_{1,1,2}
\end{align*}
where $V_1 = aU_1 + \beta U_2 + \gamma V_3$.

In Farin [4] stated that the concept of geometric continuity is not restricted to curves compared to the parametric continuity. This G^1 conditions is more relaxed because the requirement is not as strict as C^1 conditions to construct the surface.

A G^1 continuity surface on two triangular patches are obtained by obtaining the first order derivatives and the interpolant on each triangle is represented by a single cubic triangular patch. Figure 12 shows an example of Timmer ordinates of adjacent cubic Timmer triangular patches with the common edges $U_2 = V_3$ and $U_3 = V_2$.

The data points are being sampled from the given true surface but by using two composite triangular patches and comparing the performance against cubic Bézier triangular patch based on Root mean square error (RMSE) and maximum error (Max). The test functions used are listed below:

1. Franke’s exponential function
\[
 F_1 = \frac{(64 - 81((x - 0.5)^2 + (y - 0.5)^2))}{9 - 0.5}
\]

2. Steep function
\[
 F_2(x, y) = \exp\left(-\frac{(81)}{4}((x - 0.5)^2 + (y - 0.5)^2)\right)
\]

Table 1 shows the control points that are used in triangle M and N.

Table 1 Control points

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3.86E-02</td>
<td>1.34E-05</td>
</tr>
<tr>
<td>0</td>
<td>0.67</td>
<td>2.15E-01</td>
<td>1.18E-03</td>
</tr>
<tr>
<td>0</td>
<td>0.33</td>
<td>2.15E-01</td>
<td>1.18E-03</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3.86E-02</td>
<td>1.34E-05</td>
</tr>
<tr>
<td>0.33</td>
<td>0.33</td>
<td>3.56E-01</td>
<td>1.03E-01</td>
</tr>
<tr>
<td>0.67</td>
<td>0.67</td>
<td>3.56E-01</td>
<td>1.03E-01</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3.86E-02</td>
<td>1.34E-05</td>
</tr>
<tr>
<td>0.67</td>
<td>1</td>
<td>1.79E-01</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>0.33</td>
<td>1</td>
<td>1.79E-01</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>0.33</td>
<td>0.67</td>
<td>3.56E-01</td>
<td>1.03E-01</td>
</tr>
</tbody>
</table>

| Triangle N |
0	0	3.86E-02	1.34E-05
0.67	0	1.79E-01	1.18E-03
1	1	3.86E-02	1.34E-05
1	0.67	1.79E-01	1.02E-01
0.67	0.33	3.56E-01	1.03E-01
0.33	0.67	3.56E-01	1.03E-01

3.0 RESULTS AND DISCUSSION

The data points are being sampled from the given true function. From Figure 12, there are only three control points need to be calculated from Equations (15) until (17) i.e. $c_{1,0,2}$, $c_{1,1,1}$ and $c_{1,2,0}$.

The main objective, we want to reconstruct the true surfaces but by using two composite triangular patches and comparing the test functions F_1 illustrates in Figure 13 while for test function F_2 in Figure 14.
Figure 13 Test Function F_1

Figure 14 Test Function F_2
Then, the errors for root mean square error (RMSE) and maximum error (Max) is calculated in Table 2. The root mean square error is defined by

$$
RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (F_i - f(F_i))^2}
$$

(24)

where F_i is the value from the scheme, $f(F_i)$ is the test function values and m is the number of the samples.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Test Function</th>
<th>Error</th>
<th>RMSE</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>F_1</td>
<td>Bézier</td>
<td>0.0891</td>
<td>0.1157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timmer</td>
<td>0.0472</td>
<td>0.0727</td>
</tr>
<tr>
<td>F_2</td>
<td>Bézier</td>
<td>0.0786</td>
<td>0.2307</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timmer</td>
<td>0.0710</td>
<td>0.2287</td>
</tr>
<tr>
<td>G_1</td>
<td>F_1</td>
<td>Bézier</td>
<td>0.0929</td>
<td>0.1565</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timmer</td>
<td>0.0563</td>
<td>0.1434</td>
</tr>
<tr>
<td>F_2</td>
<td>Bézier</td>
<td>0.0796</td>
<td>0.2347</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timmer</td>
<td>0.0780</td>
<td>0.2287</td>
</tr>
</tbody>
</table>

Based on Table 2, cubic Timmer triangular patches is the best method since it has less error than cubic Bézier triangular patches. Then, the values of RMSE and maximum error for cubic Timmer triangular patches formed by using the C^1 continuity less than the G^1 continuity.

4.0 Conclusion

In this paper, a new cubic Timmer triangular patch is proposed to construct a better surface. The surface formed by cubic Timmer triangular patches are more approaching to the control polygon compared to cubic Bézier and Ball triangular patch. This method is based on the concept of Bézier and Ball method. Then, two patches of cubic Timmer and cubic Bézier triangular patches that fulfilled C^1 and G^1 continuity are constructed. To compare the effectiveness of these methods, RMSE and maximum error are calculated. Based on the results, cubic Timmer triangular patches are better than cubic Bézier triangular patches. The surface that fulfilled C^1 continuity is better than G^1 continuity. This new constructed cubic Timmer triangular patch can also be used for surface interpolation in which the data are scattered and non-uniform as discussed in Ali et al. [2].

Acknowledgement

This research is fully supported by Universiti Teknologi PETRONAS (UTP) through a research grant YUTP: 0153AA-H24 (Spline Triangulation for Spatial Interpolation of Geophysical Data). The first author is supported by Graduate Research Assistant Scheme (GRA).

References

